Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Improved Apriori Algorithm Hadoop Map-Reduce To Generate Frequent Item Set on Large Datasets Using Improved Apriori Algorithm
Main Article Content
Abstract
In data mining, Association rule mining becomes one of the important tasks of descriptive technique which can be defined as discovering meaningful patterns from large collection of data. Mining frequent item set is very fundamental part of association rule mining. Many algorithms have been proposed from last many decades including horizontal layout based techniques, vertical layout based techniques and projected layout based techniques. But most of the techniques suffer from repeated database scan, Candidate generation (Apriori Algorithms), memory consumption problem and many more for mining frequent patterns. As in retailer industry many transactional databases contain same set of transactions many times, to apply this thought, in this thesis present an improved Apriori algorithm that guarantee the better performance than classical Apriori algorithm.
Article Details
Section
Research Article
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.