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ABSTRACT
Design for testability (DfT) in scalable and efficient network-on-chip (NoC) architectures remains a 
significant concern in modern VLSI and system-on-chip design, which is the main source of stability, 
effectiveness, and error tolerance in complicated operational systems. With the widespread integration of 
multicore processors and heterogeneous IP cores, NoCs have been the core of on-chip communication; 
thus, the presence of robust testing strategies is essential. On the one hand, techniques such as scan-
based testing, automatic test pattern generation, and built-in self-test are the pillars of fault detection and 
diagnosis, which identify permanently as well as transiently located faults in data modern test access 
mechanisms and hierarchical testing frameworks that challenge the large-scale designs provide better 
observability and controllability an environment for the deployment of machine learning-assisted fault 
localization, which, due to their adaptive, scalable, and efficient nature, can handle ever-increasing design 
complexity. An intelligent and data-driven approach to traditional DfT methods helps to accomplish 
more fault coverage, lower test cost, and higher reliability.

Key words: Design-for-test, fault identification and localization, fault models, network-on-chip, 
system-on-chip

INTRODUCTION

Fault diagnosis is a broad concept that 
encompasses multiple processes, including 
fault detection, isolation, identification, and 
reconstruction.[1,2] Fault detection is the first 
step, focusing on determining whether a fault 
has occurred, whereas anomaly detection seeks 
to identify unusual patterns in system behavior 
before they evolve into critical failures.[3,4] Fault 
identification further categorizes the nature of 
the fault, whether mechanical, electrical, or 
parametric, whereas fault reconstruction estimates 
the magnitude of the fault using redundancy-
based models.[5,6] Together, these processes form 
the foundation of fault detection and diagnosis 
(FDD), which plays a vital role in ensuring system 
reliability and robustness across engineering 
applications.
A hardware product, known as “design for 
testability” conversely “design for test” acronymic 

Address for correspondence: 
Vivek Sharma 
E-mail: viveks@mitsgwalior.in 

as design-for-testability (DFT), comprises 
integrated circuit (IC) design proficiencies that 
include analysis characteristics. The distribution 
of passing and failing tests to infer likely faults 
on integrating DFT techniques with data-driven 
approaches to enhance fault localization and 
diagnosis. DFT mechanisms, such as scan chains, 
built-in self-test (BIST), and boundary scan, 
improve the controllability and observability of 
circuits, thereby generating rich diagnostic data.[7] 
Such deviations may include actuator blockages, 
sensor malfunctions, or component disconnections, 
all of which can alter the input–output properties 
of the circuit and degrade system performance.[8,9] 
In domains such as HVAC, transportation, and 
industrial automation, faults may not only cause 
inefficiencies but also pose risks to user safety and 
increase maintenance costs.[10,11] Similarly, in VLSI 
and system-on-chip (SoC) designs, undetected 
faults can compromise circuit functionality, reduce 
yield, and demand costly redesigns. To address 
these challenges, the FDD process aims to detect, 
locate, and analyze faults.
Fault localization has emerged as a central area of 
study. Traditional approaches, such as coverage-
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based fault localization, assign suspiciousness 
scores to circuit or program elements based on test 
coverage data.[12] Techniques such as spectrum-
based fault localization are utilized. Data-driven 
methods, including machine learning, deep 
learning, and probabilistic models, leverage this 
data to identify fault patterns and localize fault 
sites by combining structural design information 
with test and measurement data.[13,14] DFT with the 
adaptive intelligence of data-driven techniques, 
modern fault diagnosis frameworks offer a more 
scalable, interpretable, and efficient solution for 
ensuring the reliability of VLSI and SoC designs.

Structure of the Paper

The paper is organized as follows: Section 
II discusses DFT in modern circuits. Section 
III examines data-driven approaches for fault 
localization. Section IV extends the discussion 
to data-driven fault diagnosis. Section V reviews 
recent literature contributions and summarizes 
comparative studies. Finally, Section VI presents the 
conclusion and outlines future research directions.

DFT IN MODERN CIRCUITS

DFT is an essential design methodology in modern 
ICs that allows efficient detection, localization, and 
diagnosis of faults. As circuit complexity continues 
to increase, traditional testing methods often fail to 
provide sufficient fault coverage or require excessive 
time and cost.[15] DFT addresses these challenges by 
adding extra test logic and access paths within the 
circuit that improve controllability and observability 
of internal nodes. Common techniques include scan-
based testing, BIST, boundary scan mechanisms, 
and memory test and repair structures. These 
methods make it possible to detect both permanent 
and transient faults more effectively while reducing 
the dependency on external test equipment. In 
advanced technologies, DFT plays a critical role in 
improving chip reliability, reducing manufacturing 
test cost, and ensuring faster fault diagnosis, which 
ultimately supports higher yield and more robust 
circuit performance.

Principles of DFT in VLSI and SoCs

DFT in VLSI and SoCs integrates specialized 
design techniques to enhance circuit observability 

and controllability. It enables efficient fault 
detection, reduces testing complexity, and ensures 
reliable post-manufacturing validation.
1.	 Enhanced controllability and observability – 

DFT introduces additional test structures that 
improve access to internal circuit nodes,[16] 
enabling effective application of test patterns 
and observation of circuit responses.

2.	 Integration of built-in test features – 
Techniques such as scan chains, BIST, and 
memory testing modules are embedded to 
ensure automatic and efficient fault detection 
with minimal reliance on external testers.

3.	 Fault coverage and diagnosis accuracy 
– DFT ensures higher fault coverage by 
systematically targeting stuck-at, transition, 
delay, and transient faults, thereby improving 
the accuracy of fault localization and diagnosis.

4.	 Test cost and time optimization – By reducing 
dependence on complex external testing 
equipment and minimizing test cycles, DFT 
lowers manufacturing costs and accelerates 
the overall testing process in VLSI and SoCs.

5.	 Reliability and scalability – DFT supports 
the reliability of increasingly complex SoCs 
by enabling scalable testing strategies that 
can handle diverse modules, IP cores, and 
interconnects in heterogeneous architectures.

Fault Models in Digital Circuits

Fault models serve as abstractions that represent 
physical defects within digital circuits, enabling 
systematic generation of test patterns and fault 
diagnosis strategies. The most widely used 
model is the stuck-at fault, where a signal line 
is assumed to be permanently fixed at logic “0” 
or “1,” simplifying fault detection and automatic 
test pattern generation (ATPG) implementation. 
Transition and delay fault models extend this 
concept to timing-related defects, capturing 
issues such as slow-to-rise or slow-to-fall 
signals that impact circuit performance at higher 
clock frequencies. Bridging faults occur when 
unintended connections form between two or 
more signal lines, often leading to short circuits 
or logic errors.[17] Open faults, such as broken 
interconnects or transistor-level disconnections, 
are especially critical in advanced technologies and 
require current-based or IDDQ testing for reliable 
detection. More recently, models for transient 
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and intermittent faults have gained importance, 
as circuits in nanometer regimes are increasingly 
vulnerable to environmental variations, aging 
effects, and soft errors induced by radiation. 
By providing a simplified yet practical view of 
defects, fault models form the foundation of both 
traditional and data-driven test methodologies, 
ensuring effective fault localization and diagnosis 
in VLSI and SoCs

Traditional Test and Diagnosis Strategies

Traditional test and diagnosis strategies in 
digital circuits were primarily developed to 
detect structural faults and ensure functional 
correctness with minimal hardware overhead. 
These approaches rely on predefined fault models 
and systematic application of test patterns to 
evaluate circuit behavior. Functional testing 
verifies whether the circuit performs according 
to its intended specification, whereas structural 
testing focuses on identifying specific defect types 
such as stuck-at, transition, or bridging faults.[18] 
ATPG plays a crucial role in producing effective 
test vectors that maximize fault coverage, and 
scan-based testing improves observability and 
controllability by transforming sequential circuits 
into easily testable structures. Diagnosis methods, 
such as fault dictionaries and simulation-based 
comparisons, are used to isolate fault locations 
once an error is detected. Although effective for 
permanent and manufacturing-related faults, these 
traditional strategies face limitations in handling 
intermittent, transient, and aging-induced defects, 
which are increasingly common in deep submicron 
VLSI and SoC designs.

DATA-DRIVEN APPROACHES FOR 
FAULT LOCALIZATION

Data-driven approaches for fault localization 
leverage statistical learning, machine learning, 
and deep learning techniques to analyze test 
responses and identify faulty regions within a 
circuit. Unlike traditional rule-based methods that 
rely solely on predefined fault models, data-driven 
strategies exploit large volumes of simulation and 
measurement data to uncover hidden patterns 
that correlate with fault behavior.[19] Supervised 
learning methods, such as support vector 
machines (SVM), decision trees, and random 

forests (RF), have been widely applied to classify 
fault signatures and map them to potential fault 
sites. More recently, deep neural networks and 
convolutional architectures have been utilized to 
capture non-linear dependencies between input–
output patterns and fault locations with higher 
precision. Feature extraction from current, voltage, 
and delay measurements, often enhanced by signal 
processing methods such as Fourier or wavelet 
transforms, further improves fault localization 
accuracy. By continuously learning from new 
fault scenarios, these approaches not only enhance 
diagnostic resolution but also reduce the reliance on 
exhaustive test patterns, making them well-suited 
for complex and large-scale VLSI and SoC designs.

Machine Learning-Based Fault Identification

Machine learning technique for link fault identification 
and localization.[20] It is imperative to identify 
the features to be extracted from network traffic 
measurements for localizing link disconnections in 
the network link reconnection, and may correct the 
disconnected link resulting from the first stage in 
Figure 1. Below, describe the details of each stage.

Link disconnection classification
Different link disconnections may cause different traffic 
behaviors represented by the traffic measurements. 
The problem can be considered a multiclass machine 
learning classification problem. Where E is the set 
of links in the network.[21] Thus, the total number of 
classes required for training the machine learning 
algorithm corresponds to the number of network links, 
with each class representing a specific link fault to be 
detected and localized in the network. Three traffic 
features and train the learning model using one of the 
following machine learning algorithms.
•	 SVM is a supervised machine learning 

technique that tries to separate data points into 
two different classes by identifying the best 
possible separating hyperplane.

•	 RF is a classifier algorithm that constructs 
multiple decision trees during the training 
phase and outputs the mode of the individual 
trees as the class label.

Machine learning algorithms that can be used 
for a classification problem, SVM, RF, have 
demonstrated their best performance over other 
algorithms.
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Link fault identification
To identify the link fault, we estimate the end-
to-end delay of the network traffic caused by 
the disconnection of the tentative link L1, using 
aggregate flow rates captured from the network. 
The estimated end-to-end delay is compared with 
the actual delay captured from the network.

Link reconnection classification
That a link reconnection has been identified by the 
second stage, the third stage of ML-LFIL localizes 
both the disconnected link (L2) and the reconnected 
link (L3) using a link reconnection classifier. The 
disconnected link L2 might be different or the same 
as the tentative disconnected link L1, depending 
on the accuracy of the link disconnection classifier. 
Similar to link disconnection classification, link 
reconnection classification in the third stage of 
ML-LFIL (ML-LFIL-S3) is also a multiclass 
machine learning classification problem.

Deep Learning Architectures for Fault 
Mapping

The categorization of major DL-based 
approaches used in intelligent FDP. According 
to the supervision type, they can be divided into 
unsupervised methods and supervised methods. 
The former tries to find the inherent common 
pattern within data, which are unlabeled, while 
the latter refers to methods that learn highly non-
linear relationships between the input data and its 
paired labeled output.[22] More specifically, the 
supervised methods can be further divided into 
processing of specific data types or extraction of 
distinctive features, depending on their objectives. 
Their details are expanded in the following 
sections in Figure 2.
DL architectures include deep belief networks, 
autoencoders, convolutional neural networks, 
and RNNs. With the rapid development of DL 
techniques in recent years, many new architectures 

Figure 1: Block diagram of machine learning fault identification and localization

Figure 2: The categorization of deep learning techniques in intelligent FDP
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have been proposed and introduced into the 
tasks of intelligent industrial FDP. Examples are 
generative adversarial networks, transformers, 
and graph neural networks.

Statistical and Probabilistic Inference Methods

Four probabilistic models applied in the field of 
FDD are illustrated, including probabilistic PCA, 
probabilistic PLS, probabilistic ICA, probabilistic 
canonical correlation analysis (CCA), and 
probabilistic Fisher discriminant analysis (FDA). 
PCA extracts the principal components that are 
retained to explain the majority of the variability 
in the data by maximizing the variance. Compared 
to PCA, the FDA maximizes the separation among 
classes while minimizing the separation between 
classes.[23] The components after PCA decomposition 
are orthogonal and therefore irrelevant, but 
independence is not guaranteed. Compared to 
PCA, ICA can find the original components in the 
observed mixtures, and it is a linear transformation 
of the data in the original feature space. PCA 
involves only one set of variables, whereas CCA 
extends to the interdependence between two sets 
of variables, measuring the correlation between the 
two sets of variables.
Bioenergy refers to electricity, gas, and fuels 
generated from organic matter, known as biomass, 
which includes plant material, timber, agricultural 
residues, food waste, and sewage. Biomass energy 
can be used for electricity generation, heating, and 
transportation and is renewable in nature. Owing 
to its wide applicability and availability, biomass 
accounts for approximately 75% of global 
renewable energy production.[7] Furthermore, 
bioenergy is often considered carbon-neutral, as it 
does not add net carbon dioxide to the atmosphere, 
and it can reduce landfill waste by up to 90% 
through the combustion of solid waste. However, 
biomass fuels are not entirely clean, may contribute 
to deforestation, and are generally less efficient 
than fossil fuels. Effective management and 
planning are therefore essential to maximize their 
potential while mitigating associated drawbacks. 

DATA-DRIVEN APPROACHES FOR 
FAULT DIAGNOSIS

Data-driven approaches present challenges due 
to the complexity of specific systems, where 

traditional methods may be impractical due to 
limitations in modeling or available expertise. 
Data-driven techniques leverage AI and machine 
learning to extract insights directly from data, 
complementing traditional methods with 
adaptability and scalability.[24] This evolution 
highlights the transformative role of AI and ML 
in FDD, as detailed in the following section. AI 
involves creating systems that possess human-like 
cognitive functions such as learning, reasoning, 
and problem-solving. Its application ranges 
widely from autonomous vehicles to healthcare 
diagnostics. On the other hand, ML is a crucial 
subset of AI that enables machines to learn from 
data, thereby revolutionizing the way complex 
problems are tackled. It includes techniques such 
as logistic regression and neural networks, which 
are essential in various industries, including fault 
detection and process optimization

Classification of Fault Diagnosis Methods

There is a great quantity of literature on dynamic 
systems fault diagnosis, ranging from analytical 
methods to artificial intelligence and statistical 
approaches. From a modeling perspective, there 
are methods that require accurate system models 
(plants), quantitative models, or qualitative 
models. However, there are methods that do not 
require any form of model information and rely 
only on historical system data. Classification of 
fault diagnosis methods is presented in this paper 
based on the contributions of various researchers. 
This classification of fault diagnosis methods is 
shown in Figure 3. Fault diagnosis methods are 
broadly classified into three main categories: 
Model-based, hardware-based, and history-
based.
While there have been some excellent reviews in 
the field of fault diagnosis, it is of interest that the 
classification of fault diagnosis methods is very 
often not consistent. This is mainly due to the fact 
that researchers are often focused on a particular 
branch, such as analytical models, of the broad 
discipline of fault diagnosis.

Bayesian and Graph-Based Models

The fault diagnosis scheme based on a Bayesian 
network proposed in this paper is designed to 
localize faulty system components that cause 
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abnormal behaviors of a system or process, 
rather than generating an initial fault candidates’ 
set.[25] A probability distribution, which is 
computed through the Bayesian network with given 
evidence, is attached to each system component. 
Hence, the ranking of faulty system components 
can be achieved. Faulty system components to be 
localized are represented as hypothesis variables 
in the network, and system measurements are 
input to the network through the corresponding 
information variables. This has a close relation 
with the bond graph model. Components in a 
bond graph are represented as C, I, or R elements, 
whereas system measurements are represented as 
corresponding effort or flow in the bond graph.
Figure 4 illustrates the fault diagnosis scheme 
based on a Bayesian network. A bond graph model 
from the system concerned is used to construct 
a Bayesian network for localizing faulty system 
components. Once the structure of the diagnostic 
Bayesian network is known and the necessary 
CPDs are acquired from either historical data or 
expert knowledge, the Bayesian fault diagnosis 
module is activated. System measurements are 

provided to the Bayesian fault diagnosis module 
as evidence inputs to the network.

Hybrid Fault Diagnosis Approach

Model-based, signal-based, and knowledge-based 
fault diagnosis methods have their distinctive 
advantages and various constraints. Specifically, 
model-based fault diagnosis can monitor and 
diagnose unknown faults using a small amount 
of real-time data, but it requires an explicit 
model representing the input–output relationship; 

Figure 3: Classification of fault diagnosis methods

Figure 4: The proposed fault diagnosis based on a 
Bayesian network
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the diagnosis performance relies on the model 
accuracy.[26] On the other hand, signal-based and 
knowledge-based approaches do not require an 
explicit or complete model, which are particularly 
suitable for monitoring and diagnosis for complex 
industrial processes where explicit system models 
are unavailable or challenging to derive. The 
signal-based method generally extracts the major 
features of the output signals for fault diagnosis, 
but it pays less attention to system dynamic 
inputs, whose diagnosis performance may thus 
be degraded under unknown input disturbances 
or unbalanced conditions. Due to the high 
dependence on a large amount of historical data 
for training, the knowledge-based method suffers 
from high computational costs and may not work 
well for identifying unknown fault types.

Challenges in Data-Driven Fault Localization 
and Diagnosis

Data-driven fault localization and diagnosis 
in modern circuits are hindered by numerous 
technical and practical limitations that arise 
from the growing complexity and variability of 
the design. These issues have an impact on the 
performance, scalability, and trustworthiness of 
machine learning-based diagnostic methods when 
used in various technologies. The main challenges 
are outlined below and clarified:

Limited availability of labeled fault data
Data-driven models, notably deep learning 
architectures, need a massive amount of precisely 
labeled faulty data to be trained. However, 
in the case of real semiconductor setups, it 
is quite challenging to come up with such 
datasets.[27] Artificial data can be created through 
fault injection, yet it is usually incapable of 
representing the complexity and variability of the 
actual silicon defects.

Data imbalance and noise in test response
Most of the devices are without faults, and 
defective samples make up only a very small 
part of the dataset.[28] Such an imbalance makes 
machine learning models biased toward predicting 
fault-free behavior and thus less sensitive to rare 
but important failures. In addition, test responses 
can include noise due to environmental changes, 

measurement inaccuracies, and intermittent 
behavior.

Data availability and quality
Accurate ML models are only possible if we have 
high-quality runtime telemetry data. Yet there are 
issues of privacy concerns, lack of standardization 
over the broad range of various SoC architecture 
designs, and noisy or missing telemetry data as 
obstacles to data collection. This poor quality 
of data can have negative effects on the model’s 
performance.

Scalability challenges for large and complex SoCs
Modern SoC architectures entail a staggering 
number of transistors in the billions, various IP 
cores, and different functional blocks, which in 
turn makes fault diagnosis an intricate challenge 
of a very high degree.[29] The data-driven 
approaches have to handle very large test data 
sets, circuit graphs, and fail logs, all of which 
require a substantial amount of computational 
resources. Deep neural networks and graph-based 
learning techniques might find it difficult to scale 
efficiently with the growth of the circuit size.

Difficulty in modeling dynamic and transient fault
Transient faults, intermittent defects, and failures 
caused by aging are inherently non-pattern 
phenomena; hence, it is quite a challenge to use 
fixed learning models to capture them. Such faults 
can happen at random intervals due to changes in the 
environment, cosmic radiation events, or the natural 
aging of the device. Conventional data-driven 
models that are trained on static datasets rarely have 
the capability to detect or anticipate these faults.

LITERATURE REVIEW

This literature summary synthesizes recent 
advancements in data-driven fault localization 
and diagnosis within DFT-enabled circuits, 
emphasizing neural networks, hybrid analytical 
approaches, and probabilistic models.
Wu et al. propose a model-based fault detectability 
analysis method to establish the measurement 
conditions necessary for reliably detecting various 
fault types. Utilizing these measurement condition 
constraints, a mechanism-enhanced neural 
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network is designed to locate faults by fitting 
the changes in fault parameters. The consistency 
between the fitting fault parameters and the actual 
fault process ensures the interpretability of the 
diagnosis results, guaranteeing the identification 
of fault parameters. The fault circuit model assists 
in training, significantly reducing the number 
of actual fault samples required for mechanism-
enhanced neural network training.[30]

Jois and V (2024) are implementing DFT 
techniques to enhance testing efficiency and 
effectiveness. Key components such as JTAG-
compliant Registers, IJTAG-controlled Segment 
Bits, Memory BIST, Memory repair modules, 
and Boundary Scan mechanisms are strategically 
integrated into the design. ATPG and thorough 
simulations validate the effectiveness of these 
DFT strategies, the importance of the requirement 
and design of the security feature for the IJTAG 
network to provide protection against unauthorized 
access of the network, and ensure the improvement 
in robustness of the IC.[31]

Lai et al., a hybrid method for diagnosing single and 
multiple transistor open-circuit faults in grid-tied 
three-phase voltage source inverters. Combining 
explicit variable relationships in analytical models 
with the non-linear regression capability of neural 
networks, the method comprises offline model 

AQ6

training and online fault diagnosis sections. The 
offline section constructs a neural network model 
based on analytical model variables, using closed-
loop system samples to predict fault characteristics. 
In the online part, the predictive model is applied 
to the Simulink online simulation platform.[32]

Hamatwi et al., the performance of three high 
impedance fault detection techniques for the case 
of a distribution network, to select the technique 
that is best suited for detecting faults in this 
network. Discrete Fourier transform, discrete 
wavelet transforms, and the power spectrum, 
among other techniques, were selected. The 
distribution network was modeled in MATLAB/
Simulink, along with the high impedance fault 
condition. These fault detection techniques were 
modeled and applied separately to the distribution 
network under different operating conditions: 
High impedance fault, load switching, and normal 
operation.[33]

Fang et al. proposed a data-driven scheme based 
on a random vector functional link (RVFL) 
network with data dimension reduction capability 
to diagnose the power switch open-circuit faults of 
the multiphase inverter. The enhanced fast Fourier 
transform, considering the rotational speed of 
the motor, is adopted to extract the phase current 
features precisely, and then the dimensions of the 

AQ6

Table 1: Summary of a study on data‑driven methods for fault localization and diagnosis in DFT‑enabled circuits
Author Study on Approach Key findings Challenges Future directions
Wu 
et al., (2025)

Fault detectability 
analysis with 
mechanism‑enhanced 
neural networks

Model‑based detectability 
constraints + NN for 
parameter fitting

Ensures interpretability and 
reduces training samples 
needed by integrating 
circuit models

Requires accurate 
modeling of measurement 
constraints; limited by 
complex fault interactions

Extend to large‑scale 
SoCs and adaptive 
online training

Jois and V, 
(2024)

DFT strategies for 
improved testing

Integration of JTAG, 
IJTAG, MBIST, repair 
modules, boundary 
scan + ATPG

Enhances testing efficiency 
and robustness with security 
features in IJTAG

Overhead in integrating 
multiple modules; 
vulnerability to evolving 
security threats

Develop 
low‑overhead, 
AI‑assisted secure 
DFT frameworks

Lai 
et al., (2024)

Hybrid diagnosis 
of open‑circuit 
transistor faults in 
inverters

Analytical 
models + neural 
networks (offline training, 
online simulation)

Accurate diagnosis of single 
and multiple transistor 
faults using a combined 
offline‑online strategy

Dependence on accurate 
modeling and simulation; 
computational cost

Real‑time hardware 
implementation and 
adaptive learning 
models

Hamatwi 
et al., (2023)

High impedance 
fault detection in 
distribution networks

Comparative evaluation 
of DFT, DWT, and power 
spectrum methods in 
MATLAB/Simulink

Identified suitable 
techniques for detecting 
high impedance faults under 
varying conditions

Sensitivity to noise and 
operational variability

Develop hybrid 
multi‑resolution 
detection methods 
with ML integration

Fang 
et al., (2022)

Fault diagnosis in 
multiphase inverters

FFT + Relief 
algorithm for feature 
extraction + RVFL 
neural network

High‑accuracy diagnosis 
with reduced computational 
cost

Dependence on precise 
feature extraction; limited 
generalization

Apply deep learning 
and transfer 
learning for broader 
applicability

Jiang (2021) Probabilistic fault 
location in power 
distribution

Data‑driven MILP 
with multiple sensor 
inputs (IEDs, SCADA, 
smart meters)

Improved fault location 
accuracy by leveraging 
probabilistic sensor 
data fusion

High complexity 
of MILP; real‑time 
implementation issues

Scalable probabilistic 
frameworks for smart 
grids with adaptive 
data fusion

RVFL: Random vector functional link, FFT: Fast Fourier transform, IEDs: Intelligent electric devices, MILP: Mixed integer linear programming, DFT: Design‑for‑testability
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data are reduced through the Relief algorithm. 
At last, the faults are detected and diagnosed by 
the RVFL network. Simulation experiments and 
comparison analysis are conducted on a six-phase 
permanent magnet synchronous motor drive 
system, which demonstrates that the proposed 
method can effectively extract fault features 
and achieve high accuracy while reducing the 
computational effort.[34]

Jiang is a data-driven probabilistic fault location 
methodology based on comprehensive sensing 
measurement from digital relays at substations, 
intelligent electric devices (IEDs) along primary 
feeders, SCADA sensors in the feeder circuit, and 
smart meters at customers’ premises. Statistics of 
historical fault location accuracies by digital relays 
and IEDs are used to estimate fault location errors. 
Multiple-hypothesis analysis is implemented to 
handle the uncertainties from SCADA sensors and 
smart meters. The spatial correlation between the 
potential fault location and collected sensor data 
is modeled as a mixed integer linear programming 
problem.[35]

Table 1 presents a comparative summary of recent 
studies on data-driven fault localization and 
diagnosis in DFT-enabled circuits, highlighting 
applied approaches, key contributions, associated 
challenges, and prospective research directions.

CONCLUSION AND FUTURE WORK

Design-for-test in scalable and high-performance 
network-on-chip architectures is a critical 
aspect. Testing is still a crucial issue in VLSI 
and SoC designs, which are the main sources of 
functionality, reliability, and long-term system 
sustainability. Various methodologies, such as 
fault models, ATPG, scan-based testing, and BIST, 
have evolved over the years to provide structured 
approaches for FDD. However, the increasing 
complexity of the design makes traditional 
techniques less scalable, efficient, and capable 
of handling transient or intermittent faults. To 
overcome these problems, DFT principles have 
been implemented in large-scale systems, thus 
improving controllability, observability, and fault 
coverage. Moreover, the latest developments in 
data-driven methods, especially machine learning 
and probabilistic approaches, give the localization 
of faults a new direction in terms of accuracy 
and adaptability. The integration of classical 

AQ6

DFT tactics with contemporary intelligent 
frameworks is a landmark transition toward 
comprehensive test solutions. However, there 
are still limitations in scaling to heterogeneous 
SoCs and guaranteeing real-time diagnosis. The 
future should, among other things, concentrate on 
the integration of resourceful and adaptive fault 
detection models that are capable of working with 
advanced DFT architectures so as to take care of 
the issue of scalability in very complex SoCs. 
The point of the hybrid methods that merge the 
conventional strategies with the AI-driven ones 
should be the real-time diagnosis, the hardware 
overhead reduction, and the energy-efficient fault 
localization, i.e., in this way, the last-mentioned 
three problems will be resolved.
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