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ABSTRACT

Design for testability (DfT) in scalable and efficient network-on-chip (NoC) architectures remains a
significant concern in modern VLSI and system-on-chip design, which is the main source of stability,
effectiveness, and error tolerance in complicated operational systems. With the widespread integration of
multicore processors and heterogeneous IP cores, NoCs have been the core of on-chip communication;
thus, the presence of robust testing strategies is essential. On the one hand, techniques such as scan-
based testing, automatic test pattern generation, and built-in self-test are the pillars of fault detection and
diagnosis, which identify permanently as well as transiently located faults in data modern test access
mechanisms and hierarchical testing frameworks that challenge the large-scale designs provide better
observability and controllability an environment for the deployment of machine learning-assisted fault
localization, which, due to their adaptive, scalable, and efficient nature, can handle ever-increasing design
complexity. An intelligent and data-driven approach to traditional DfT methods helps to accomplish
more fault coverage, lower test cost, and higher reliability.

Key words: Design-for-test, fault identification and localization, fault models, network-on-chip,
system-on-chip

INTRODUCTION as design-for-testability (DFT), comprises

. L integrated circuit (IC) design proficiencies that
Fault  diagnosis 1§ a  broad concsapt that include analysis characteristics. The distribution
Cncompasses mu‘ltlple. processes, ‘1nclud1ng of passing and failing tests to infer likely faults
fault detection, isolation, identification, and

on integrating DFT techniques with data-driven
approaches to enhance fault localization and
diagnosis. DFT mechanisms, such as scan chains,
built-in self-test (BIST), and boundary scan,
improve the controllability and observability of
circuits, thereby generating rich diagnostic data.!”
Such deviations may include actuator blockages,
sensor malfunctions, or componentdisconnections,
all of which can alter the input—output properties
of the circuit and degrade system performance.”!
In domains such as HVAC, transportation, and
industrial automation, faults may not only cause
inefficiencies but also pose risks to user safety and
increase maintenance costs.!'“!"! Similarly, in VLSI
and system-on-chip (SoC) designs, undetected
faults can compromise circuit functionality, reduce
yield, and demand costly redesigns. To address
these challenges, the FDD process aims to detect,

reconstruction.!?! Fault detection is the first
step, focusing on determining whether a fault
has occurred, whereas anomaly detection seeks
to identify unusual patterns in system behavior
before they evolve into critical failures.?# Fault
identification further categorizes the nature of
the fault, whether mechanical, electrical, or
parametric, whereas fault reconstruction estimates
the magnitude of the fault using redundancy-
based models.>8! Together, these processes form
the foundation of fault detection and diagnosis
(FDD), which plays a vital role in ensuring system
reliability and robustness across engineering
applications.

A hardware product, known as “design for
testability” conversely “design for test” acronymic
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locate, and analyze faults.
Fault localization has emerged as a central area of
study. Traditional approaches, such as coverage-
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based fault localization, assign suspiciousness
scores to circuit or program elements based on test
coverage data.'” Techniques such as spectrum-
based fault localization are utilized. Data-driven
methods, including machine learning, deep
learning, and probabilistic models, leverage this
data to identify fault patterns and localize fault
sites by combining structural design information
with test and measurement data.!'>!'*! DFT with the
adaptive intelligence of data-driven techniques,
modern fault diagnosis frameworks offer a more
scalable, interpretable, and efficient solution for
ensuring the reliability of VLSI and SoC designs.

Structure of the Paper
The paper is organized as follows: Section
II discusses DFT in modern circuits. Section

[II examines data-driven approaches for fault
localization. Section IV extends the discussion
to data-driven fault diagnosis. Section V reviews
recent literature contributions and summarizes
comparative studies. Finally, Section VI presents the
conclusion and outlines future research directions.

DFT IN MODERN CIRCUITS

DFT is an essential design methodology in modern
ICs that allows efficient detection, localization, and
diagnosis of faults. As circuit complexity continues
to increase, traditional testing methods often fail to
provide sufficient fault coverage or require excessive
time and cost." DFT addresses these challenges by
adding extra test logic and access paths within the
circuit that improve controllability and observability
of internal nodes. Common techniques include scan-
based testing, BIST, boundary scan mechanisms,
and memory test and repair structures. These
methods make it possible to detect both permanent
and transient faults more effectively while reducing
the dependency on external test equipment. In
advanced technologies, DFT plays a critical role in
improving chip reliability, reducing manufacturing
test cost, and ensuring faster fault diagnosis, which
ultimately supports higher yield and more robust
circuit performance.

Principles of DFT in VLSI and SoCs

DFT in VLSI and SoCs integrates specialized
design techniques to enhance circuit observability
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and controllability. It enables efficient fault

detection, reduces testing complexity, and ensures

reliable post-manufacturing validation.

1. Enhanced controllability and observability —
DFT introduces additional test structures that
improve access to internal circuit nodes,!®
enabling effective application of test patterns
and observation of circuit responses.

2. Integration of built-in test features -—
Techniques such as scan chains, BIST, and
memory testing modules are embedded to
ensure automatic and efficient fault detection
with minimal reliance on external testers.

3. Fault coverage and diagnosis accuracy
— DFT ensures higher fault coverage by
systematically targeting stuck-at, transition,
delay, and transient faults, thereby improving
the accuracy of fault localization and diagnosis.

4. Test cost and time optimization — By reducing
dependence on complex external testing
equipment and minimizing test cycles, DFT
lowers manufacturing costs and accelerates
the overall testing process in VLSI and SoCs.

5. Reliability and scalability — DFT supports
the reliability of increasingly complex SoCs
by enabling scalable testing strategies that
can handle diverse modules, IP cores, and
interconnects in heterogeneous architectures.

Fault Models in Digital Circuits

Fault models serve as abstractions that represent
physical defects within digital circuits, enabling
systematic generation of test patterns and fault
diagnosis strategies. The most widely used
model is the stuck-at fault, where a signal line
is assumed to be permanently fixed at logic “0”
or “1,” simplifying fault detection and automatic
test pattern generation (ATPG) implementation.
Transition and delay fault models extend this
concept to timing-related defects, capturing
issues such as slow-to-rise or slow-to-fall
signals that impact circuit performance at higher
clock frequencies. Bridging faults occur when
unintended connections form between two or
more signal lines, often leading to short circuits
or logic errors.'” Open faults, such as broken
interconnects or transistor-level disconnections,
are especially critical in advanced technologies and
require current-based or IDDQ testing for reliable
detection. More recently, models for transient
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and intermittent faults have gained importance,
as circuits in nanometer regimes are increasingly
vulnerable to environmental variations, aging
effects, and soft errors induced by radiation.
By providing a simplified yet practical view of
defects, fault models form the foundation of both
traditional and data-driven test methodologies,
ensuring effective fault localization and diagnosis
in VLSI and SoCs

Traditional Test and Diagnosis Strategies

Traditional test and diagnosis strategies in
digital circuits were primarily developed to
detect structural faults and ensure functional
correctness with minimal hardware overhead.
These approaches rely on predefined fault models
and systematic application of test patterns to
evaluate circuit behavior. Functional testing
verifies whether the circuit performs according
to its intended specification, whereas structural
testing focuses on identifying specific defect types
such as stuck-at, transition, or bridging faults.'*!
ATPG plays a crucial role in producing effective
test vectors that maximize fault coverage, and
scan-based testing improves observability and
controllability by transforming sequential circuits
into easily testable structures. Diagnosis methods,
such as fault dictionaries and simulation-based
comparisons, are used to isolate fault locations
once an error is detected. Although effective for
permanent and manufacturing-related faults, these
traditional strategies face limitations in handling
intermittent, transient, and aging-induced defects,
which are increasingly common in deep submicron
VLSI and SoC designs.

DATA-DRIVEN APPROACHES FOR
FAULT LOCALIZATION

Data-driven approaches for fault localization
leverage statistical learning, machine learning,
and deep learning techniques to analyze test
responses and identify faulty regions within a
circuit. Unlike traditional rule-based methods that
rely solely on predefined fault models, data-driven
strategies exploit large volumes of simulation and
measurement data to uncover hidden patterns
that correlate with fault behavior.["! Supervised
learning methods, such as support vector
machines (SVM), decision trees, and random
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forests (RF), have been widely applied to classify
fault signatures and map them to potential fault
sites. More recently, deep neural networks and
convolutional architectures have been utilized to
capture non-linear dependencies between input—
output patterns and fault locations with higher
precision. Feature extraction from current, voltage,
and delay measurements, often enhanced by signal
processing methods such as Fourier or wavelet
transforms, further improves fault localization
accuracy. By continuously learning from new
fault scenarios, these approaches not only enhance
diagnostic resolution but also reduce the reliance on
exhaustive test patterns, making them well-suited
for complex and large-scale VLSI and SoC designs.

Machine Learning-Based Fault Identification

Machine learning technique for link faultidentification
and localization.”” It is imperative to identify
the features to be extracted from network traffic
measurements for localizing link disconnections in
the network link reconnection, and may correct the
disconnected link resulting from the first stage in
Figure 1. Below, describe the details of each stage.

Link disconnection classification
Differentlink disconnectionsmay cause differenttraftic
behaviors represented by the traffic measurements.
The problem can be considered a multiclass machine
learning classification problem. Where E is the set
of links in the network.?"! Thus, the total number of
classes required for training the machine learning
algorithm corresponds to the number of network links,
with each class representing a specific link fault to be
detected and localized in the network. Three traffic
features and train the learning model using one of the
following machine learning algorithms.

e SVM is a supervised machine learning
technique that tries to separate data points into
two different classes by identifying the best
possible separating hyperplane.

e RF is a classifier algorithm that constructs
multiple decision trees during the training
phase and outputs the mode of the individual
trees as the class label.

Machine learning algorithms that can be used
for a classification problem, SVM, RF, have
demonstrated their best performance over other
algorithms.
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Link fault identification

To identify the link fault, we estimate the end-
to-end delay of the network traffic caused by
the disconnection of the tentative link L1, using
aggregate flow rates captured from the network.
The estimated end-to-end delay is compared with
the actual delay captured from the network.

Link reconnection classification

That a link reconnection has been identified by the
second stage, the third stage of ML-LFIL localizes
both the disconnected link (L2) and the reconnected
link (L3) using a link reconnection classifier. The
disconnected link L2 might be different or the same
as the tentative disconnected link L1, depending
on the accuracy of the link disconnection classifier.
Similar to link disconnection classification, link
reconnection classification in the third stage of
ML-LFIL (ML-LFIL-S3) is also a multiclass
machine learning classification problem.

.................

Deep Learning Architectures for Fault
Mapping

The categorization of major DL-based
approaches used in intelligent FDP. According
to the supervision type, they can be divided into
unsupervised methods and supervised methods.
The former tries to find the inherent common
pattern within data, which are unlabeled, while
the latter refers to methods that learn highly non-
linear relationships between the input data and its
paired labeled output.”) More specifically, the
supervised methods can be further divided into
processing of specific data types or extraction of
distinctive features, depending on their objectives.
Their details are expanded in the following
sections in Figure 2.

DL architectures include deep belief networks,
autoencoders, convolutional neural networks,
and RNNs. With the rapid development of DL
techniques in recent years, many new architectures

Traffic features

| Tematve

disconnection [-disconnected < Delay

ink(L,) : | Regressor

Figure 1: Block diagram of machine learning fault identification and localization
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Figure 2: The categorization of deep learning techniques in intelligent FDP
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have been proposed and introduced into the
tasks of intelligent industrial FDP. Examples are
generative adversarial networks, transformers,
and graph neural networks.

Statistical and Probabilistic Inference Methods

Four probabilistic models applied in the field of
FDD are illustrated, including probabilistic PCA,
probabilistic PLS, probabilistic ICA, probabilistic
canonical correlation analysis (CCA), and
probabilistic Fisher discriminant analysis (FDA).
PCA extracts the principal components that are
retained to explain the majority of the variability
in the data by maximizing the variance. Compared
to PCA, the FDA maximizes the separation among
classes while minimizing the separation between
classes.* The componentsafter PCAdecomposition
are orthogonal and therefore irrelevant, but
independence is not guaranteed. Compared to
PCA, ICA can find the original components in the
observed mixtures, and it is a linear transformation
of the data in the original feature space. PCA
involves only one set of variables, whereas CCA
extends to the interdependence between two sets
of variables, measuring the correlation between the
two sets of variables.

Bioenergy refers to electricity, gas, and fuels
generated from organic matter, known as biomass,
which includes plant material, timber, agricultural
residues, food waste, and sewage. Biomass energy
can be used for electricity generation, heating, and
transportation and is renewable in nature. Owing
to its wide applicability and availability, biomass
accounts for approximately 75% of global
renewable energy production.” Furthermore,
bioenergy is often considered carbon-neutral, as it
does not add net carbon dioxide to the atmosphere,
and it can reduce landfill waste by up to 90%
through the combustion of solid waste. However,
biomass fuels are not entirely clean, may contribute
to deforestation, and are generally less efficient
than fossil fuels. Effective management and
planning are therefore essential to maximize their
potential while mitigating associated drawbacks.

DATA-DRIVEN APPROACHES FOR
FAULT DIAGNOSIS

Data-driven approaches present challenges due
to the complexity of specific systems, where
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traditional methods may be impractical due to
limitations in modeling or available expertise.
Data-driven techniques leverage Al and machine
learning to extract insights directly from data,
complementing  traditional methods  with
adaptability and scalability.*¥ This evolution
highlights the transformative role of AI and ML
in FDD, as detailed in the following section. Al
involves creating systems that possess human-like
cognitive functions such as learning, reasoning,
and problem-solving. Its application ranges
widely from autonomous vehicles to healthcare
diagnostics. On the other hand, ML is a crucial
subset of Al that enables machines to learn from
data, thereby revolutionizing the way complex
problems are tackled. It includes techniques such
as logistic regression and neural networks, which
are essential in various industries, including fault
detection and process optimization

Classification of Fault Diagnosis Methods

There is a great quantity of literature on dynamic
systems fault diagnosis, ranging from analytical
methods to artificial intelligence and statistical
approaches. From a modeling perspective, there
are methods that require accurate system models
(plants), quantitative models, or qualitative
models. However, there are methods that do not
require any form of model information and rely
only on historical system data. Classification of
fault diagnosis methods is presented in this paper
based on the contributions of various researchers.
This classification of fault diagnosis methods is
shown in Figure 3. Fault diagnosis methods are
broadly classified into three main categories:
Model-based, hardware-based, and history-
based.

While there have been some excellent reviews in
the field of fault diagnosis, it is of interest that the
classification of fault diagnosis methods is very
often not consistent. This is mainly due to the fact
that researchers are often focused on a particular
branch, such as analytical models, of the broad
discipline of fault diagnosis.

Bayesian and Graph-Based Models

The fault diagnosis scheme based on a Bayesian
network proposed in this paper is designed to
localize faulty system components that cause
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Figure 3: Classification of fault diagnosis methods
abnormal behaviors of a system or process, S

rather than generating an initial fault candidates’
set.® A probability distribution, which is
computed through the Bayesian network with given
evidence, is attached to each system component.
Hence, the ranking of faulty system components
can be achieved. Faulty system components to be
localized are represented as hypothesis variables
in the network, and system measurements are
input to the network through the corresponding
information variables. This has a close relation
with the bond graph model. Components in a
bond graph are represented as C, I, or R elements,
whereas system measurements are represented as
corresponding effort or flow in the bond graph.

Figure 4 illustrates the fault diagnosis scheme
based on a Bayesian network. A bond graph model
from the system concerned is used to construct
a Bayesian network for localizing faulty system
components. Once the structure of the diagnostic
Bayesian network is known and the necessary
CPDs are acquired from either historical data or
expert knowledge, the Bayesian fault diagnosis
module is activated. System measurements are
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Figure 4: The proposed fault diagnosis based on a
Bayesian network

|

Bayesian Fault
Diagnosis

Probabilities of faulty
components

’ Evidence

provided to the Bayesian fault diagnosis module
as evidence inputs to the network.

Hybrid Fault Diagnosis Approach

Model-based, signal-based, and knowledge-based
fault diagnosis methods have their distinctive
advantages and various constraints. Specifically,
model-based fault diagnosis can monitor and
diagnose unknown faults using a small amount
of real-time data, but it requires an explicit
model representing the input—output relationship;
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the diagnosis performance relies on the model
accuracy.?® On the other hand, signal-based and
knowledge-based approaches do not require an
explicit or complete model, which are particularly
suitable for monitoring and diagnosis for complex
industrial processes where explicit system models
are unavailable or challenging to derive. The
signal-based method generally extracts the major
features of the output signals for fault diagnosis,
but it pays less attention to system dynamic
inputs, whose diagnosis performance may thus
be degraded under unknown input disturbances
or unbalanced conditions. Due to the high
dependence on a large amount of historical data
for training, the knowledge-based method suffers
from high computational costs and may not work
well for identifying unknown fault types.

Challenges in Data-Driven Fault Localization
and Diagnosis

Data-driven fault localization and diagnosis
in modern circuits are hindered by numerous
technical and practical limitations that arise
from the growing complexity and variability of
the design. These issues have an impact on the
performance, scalability, and trustworthiness of
machine learning-based diagnostic methods when
used in various technologies. The main challenges
are outlined below and clarified:

Limited availability of labeled fault data
Data-driven models, notably deep learning
architectures, need a massive amount of precisely
labeled faulty data to be trained. However,
in the case of real semiconductor setups, it
is quite challenging to come up with such
datasets.*”) Artificial data can be created through
fault injection, yet it is usually incapable of
representing the complexity and variability of the
actual silicon defects.

Data imbalance and noise in test response

Most of the devices are without faults, and
defective samples make up only a very small
part of the dataset.”® Such an imbalance makes
machine learning models biased toward predicting
fault-free behavior and thus less sensitive to rare
but important failures. In addition, test responses
can include noise due to environmental changes,
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measurement inaccuracies, and intermittent

behavior.

Data availability and quality

Accurate ML models are only possible if we have
high-quality runtime telemetry data. Yet there are
issues of privacy concerns, lack of standardization
over the broad range of various SoC architecture
designs, and noisy or missing telemetry data as
obstacles to data collection. This poor quality
of data can have negative effects on the model’s
performance.

Scalability challenges for large and complex SoCs
Modern SoC architectures entail a staggering
number of transistors in the billions, various IP
cores, and different functional blocks, which in
turn makes fault diagnosis an intricate challenge
of a very high degree.”” The data-driven
approaches have to handle very large test data
sets, circuit graphs, and fail logs, all of which
require a substantial amount of computational
resources. Deep neural networks and graph-based
learning techniques might find it difficult to scale
efficiently with the growth of the circuit size.

Difficulty in modeling dynamic and transient fault
Transient faults, intermittent defects, and failures
caused by aging are inherently non-pattern
phenomena; hence, it is quite a challenge to use
fixed learning models to capture them. Such faults
can happen at random intervals due to changes in the
environment, cosmic radiation events, or the natural
aging of the device. Conventional data-driven
models that are trained on static datasets rarely have
the capability to detect or anticipate these faults.

LITERATURE REVIEW

This literature summary synthesizes recent
advancements in data-driven fault localization
and diagnosis within DFT-enabled circuits,
emphasizing neural networks, hybrid analytical
approaches, and probabilistic models.

Wu et al. propose a model-based fault detectability
analysis method to establish the measurement
conditions necessary for reliably detecting various
fault types. Utilizing these measurement condition
constraints, a mechanism-enhanced neural
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Table 1: Summary of a study on data-driven methods for fault localization and diagnosis in DFT-enabled circuits

Author

Study on

Approach

Key findings

Challenges

Future directions

Wu
et al., (2025)

Jois and V,
(2024)

Lai
et al., (2024)

Hamatwi
etal., (2023)

Fang
et al., (2022)

Jiang (2021)

Fault detectability
analysis with
mechanism-enhanced
neural networks

DFT strategies for
improved testing

Hybrid diagnosis
of open-circuit
transistor faults in
inverters

High impedance
fault detection in
distribution networks

Fault diagnosis in
multiphase inverters

Probabilistic fault
location in power
distribution

Model-based detectability
constraints + NN for
parameter fitting

Integration of JTAG,
IJTAG, MBIST, repair
modules, boundary
scan + ATPG

Analytical

models + neural

networks (offline training,
online simulation)

Comparative evaluation
of DFT, DWT, and power
spectrum methods in
MATLAB/Simulink
FFT + Relief

algorithm for feature
extraction + RVFL
neural network
Data-driven MILP

with multiple sensor
inputs (IEDs, SCADA,
smart meters)

Ensures interpretability and
reduces training samples
needed by integrating
circuit models

Enhances testing efficiency
and robustness with security
features in I TAG

Accurate diagnosis of single
and multiple transistor
faults using a combined
offline-online strategy

Identified suitable
techniques for detecting
high impedance faults under
varying conditions

High-accuracy diagnosis
with reduced computational
cost

Improved fault location
accuracy by leveraging
probabilistic sensor
data fusion

Requires accurate
modeling of measurement
constraints; limited by
complex fault interactions

Overhead in integrating
multiple modules;
vulnerability to evolving
security threats

Dependence on accurate
modeling and simulation;
computational cost

Sensitivity to noise and
operational variability

Dependence on precise
feature extraction; limited
generalization

High complexity
of MILP; real-time
implementation issues

Extend to large-scale
SoCs and adaptive
online training

Develop
low-overhead,
Al-assisted secure
DFT frameworks

Real-time hardware
implementation and
adaptive learning
models

Develop hybrid
multi-resolution
detection methods
with ML integration

Apply deep learning
and transfer

learning for broader
applicability

Scalable probabilistic
frameworks for smart
grids with adaptive
data fusion

RVFL: Random vector functional link, FFT: Fast Fourier transform, IEDs: Intelligent electric devices, MILP: Mixed integer linear programming, DFT: Design-for-testability

network is designed to locate faults by fitting
the changes in fault parameters. The consistency
between the fitting fault parameters and the actual
fault process ensures the interpretability of the
diagnosis results, guaranteeing the identification
of fault parameters. The fault circuit model assists
in training, significantly reducing the number
of actual fault samples required for mechanism-
enhanced neural network training.*"

Jois and V (2024) are implementing DFT
techniques to enhance testing efficiency and
effectiveness. Key components such as JTAG-
compliant Registers, IJTAG-controlled Segment
Bits, Memory BIST, Memory repair modules,
and Boundary Scan mechanisms are strategically
integrated into the design. ATPG and thorough
simulations validate the effectiveness of these
DFT strategies, the importance of the requirement
and design of the security feature for the [JTAG
network to provide protection against unauthorized
access of the network, and ensure the improvement
in robustness of the IC.BY

Lai et al., ahybrid method for diagnosing single and
multiple transistor open-circuit faults in grid-tied
three-phase voltage source inverters. Combining
explicit variable relationships in analytical models
with the non-linear regression capability of neural
networks, the method comprises offline model
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training and online fault diagnosis sections. The
offline section constructs a neural network model
based on analytical model variables, using closed-
loop system samples to predict fault characteristics.
In the online part, the predictive model is applied
to the Simulink online simulation platform.**
Hamatwi et al., the performance of three high
impedance fault detection techniques for the case
of a distribution network, to select the technique
that is best suited for detecting faults in this
network. Discrete Fourier transform, discrete
wavelet transforms, and the power spectrum,
among other techniques, were selected. The
distribution network was modeled in MATLAB/
Simulink, along with the high impedance fault
condition. These fault detection techniques were
modeled and applied separately to the distribution
network under different operating conditions:
High impedance fault, load switching, and normal
operation.?**!

Fang et al. proposed a data-driven scheme based
on a random vector functional link (RVFL)
network with data dimension reduction capability
to diagnose the power switch open-circuit faults of
the multiphase inverter. The enhanced fast Fourier
transform, considering the rotational speed of
the motor, is adopted to extract the phase current
features precisely, and then the dimensions of the
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data are reduced through the Relief algorithm.
At last, the faults are detected and diagnosed by
the RVFL network. Simulation experiments and
comparison analysis are conducted on a six-phase
permanent magnet synchronous motor drive
system, which demonstrates that the proposed
method can effectively extract fault features
and achieve high accuracy while reducing the
computational effort.

Jiang 1s a data-driven probabilistic fault location
methodology based on comprehensive sensing
measurement from digital relays at substations,
intelligent electric devices (IEDs) along primary
feeders, SCADA sensors in the feeder circuit, and
smart meters at customers’ premises. Statistics of
historical fault location accuracies by digital relays
and IEDs are used to estimate fault location errors.
Multiple-hypothesis analysis is implemented to
handle the uncertainties from SCADA sensors and
smart meters. The spatial correlation between the
potential fault location and collected sensor data
is modeled as a mixed integer linear programming
problem.!

Table 1 presents a comparative summary of recent
studies on data-driven fault localization and
diagnosis in DFT-enabled circuits, highlighting
applied approaches, key contributions, associated
challenges, and prospective research directions.

CONCLUSION AND FUTURE WORK

Design-for-test in scalable and high-performance
network-on-chip architectures is a critical
aspect. Testing is still a crucial issue in VLSI
and SoC designs, which are the main sources of
functionality, reliability, and long-term system
sustainability. Various methodologies, such as
fault models, ATPG, scan-based testing, and BIST,
have evolved over the years to provide structured
approaches for FDD. However, the increasing
complexity of the design makes traditional
techniques less scalable, efficient, and capable
of handling transient or intermittent faults. To
overcome these problems, DFT principles have
been implemented in large-scale systems, thus
improving controllability, observability, and fault
coverage. Moreover, the latest developments in
data-driven methods, especially machine learning
and probabilistic approaches, give the localization
of faults a new direction in terms of accuracy
and adaptability. The integration of classical
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DFT tactics with contemporary intelligent
frameworks is a landmark transition toward
comprehensive test solutions. However, there
are still limitations in scaling to heterogeneous
SoCs and guaranteeing real-time diagnosis. The
future should, among other things, concentrate on
the integration of resourceful and adaptive fault
detection models that are capable of working with
advanced DFT architectures so as to take care of
the issue of scalability in very complex SoCs.
The point of the hybrid methods that merge the
conventional strategies with the Al-driven ones
should be the real-time diagnosis, the hardware
overhead reduction, and the energy-efticient fault
localization, i.e., in this way, the last-mentioned
three problems will be resolved.
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