

REVIEW ARTICLE

A Review of Data-Driven Methods for Fault Localization and Diagnosis in DFT-Enabled Circuit

Vivek Sharma*

Independent Researcher

Received on: 12-11-2025; Revised on: 10-04-2026; Accepted : 02-05-2026

ABSTRACT

Design for testability (DfT) in scalable and efficient network-on-chip (NoC) architectures remains a significant concern in modern VLSI and system-on-chip design, which is the main source of stability, effectiveness, and error tolerance in complicated operational systems. With the widespread integration of multicore processors and heterogeneous IP cores, NoCs have been the core of on-chip communication; thus, the presence of robust testing strategies is essential. On the one hand, techniques such as scan-based testing, automatic test pattern generation, and built-in self-test are the pillars of fault detection and diagnosis, which identify permanently as well as transiently located faults in data modern test access mechanisms and hierarchical testing frameworks that challenge the large-scale designs provide better observability and controllability an environment for the deployment of machine learning-assisted fault localization, which, due to their adaptive, scalable, and efficient nature, can handle ever-increasing design complexity. An intelligent and data-driven approach to traditional DfT methods helps to accomplish more fault coverage, lower test cost, and higher reliability.

Key words: Design-for-test, fault identification and localization, fault models, network-on-chip, system-on-chip

INTRODUCTION

Fault diagnosis is a broad concept that encompasses multiple processes, including fault detection, isolation, identification, and reconstruction.^[1,2] Fault detection is the first step, focusing on determining whether a fault has occurred, whereas anomaly detection seeks to identify unusual patterns in system behavior before they evolve into critical failures.^[3,4] Fault identification further categorizes the nature of the fault, whether mechanical, electrical, or parametric, whereas fault reconstruction estimates the magnitude of the fault using redundancy-based models.^[5,6] Together, these processes form the foundation of fault detection and diagnosis (FDD), which plays a vital role in ensuring system reliability and robustness across engineering applications.

A hardware product, known as “design for testability” conversely “design for test” acronymic

as design-for-testability (DFT), comprises integrated circuit (IC) design proficiencies that include analysis characteristics. The distribution of passing and failing tests to infer likely faults on integrating DFT techniques with data-driven approaches to enhance fault localization and diagnosis. DFT mechanisms, such as scan chains, built-in self-test (BIST), and boundary scan, improve the controllability and observability of circuits, thereby generating rich diagnostic data.^[7] Such deviations may include actuator blockages, sensor malfunctions, or component disconnections, all of which can alter the input–output properties of the circuit and degrade system performance.^[8,9] In domains such as HVAC, transportation, and industrial automation, faults may not only cause inefficiencies but also pose risks to user safety and increase maintenance costs.^[10,11] Similarly, in VLSI and system-on-chip (SoC) designs, undetected faults can compromise circuit functionality, reduce yield, and demand costly redesigns. To address these challenges, the FDD process aims to detect, locate, and analyze faults.

Fault localization has emerged as a central area of study. Traditional approaches, such as coverage-

Address for correspondence:

Vivek Sharma

E-mail: viveks@mitsgwalior.in

based fault localization, assign suspiciousness scores to circuit or program elements based on test coverage data.^[12] Techniques such as spectrum-based fault localization are utilized. Data-driven methods, including machine learning, deep learning, and probabilistic models, leverage this data to identify fault patterns and localize fault sites by combining structural design information with test and measurement data.^[13,14] DFT with the adaptive intelligence of data-driven techniques, modern fault diagnosis frameworks offer a more scalable, interpretable, and efficient solution for ensuring the reliability of VLSI and SoC designs.

Structure of the Paper

The paper is organized as follows: Section II discusses DFT in modern circuits. Section III examines data-driven approaches for fault localization. Section IV extends the discussion to data-driven fault diagnosis. Section V reviews recent literature contributions and summarizes comparative studies. Finally, Section VI presents the conclusion and outlines future research directions.

DFT IN MODERN CIRCUITS

DFT is an essential design methodology in modern ICs that allows efficient detection, localization, and diagnosis of faults. As circuit complexity continues to increase, traditional testing methods often fail to provide sufficient fault coverage or require excessive time and cost.^[15] DFT addresses these challenges by adding extra test logic and access paths within the circuit that improve controllability and observability of internal nodes. Common techniques include scan-based testing, BIST, boundary scan mechanisms, and memory test and repair structures. These methods make it possible to detect both permanent and transient faults more effectively while reducing the dependency on external test equipment. In advanced technologies, DFT plays a critical role in improving chip reliability, reducing manufacturing test cost, and ensuring faster fault diagnosis, which ultimately supports higher yield and more robust circuit performance.

Principles of DFT in VLSI and SoCs

DFT in VLSI and SoCs integrates specialized design techniques to enhance circuit observability

and controllability. It enables efficient fault detection, reduces testing complexity, and ensures reliable post-manufacturing validation.

1. Enhanced controllability and observability – DFT introduces additional test structures that improve access to internal circuit nodes,^[16] enabling effective application of test patterns and observation of circuit responses.
2. Integration of built-in test features – Techniques such as scan chains, BIST, and memory testing modules are embedded to ensure automatic and efficient fault detection with minimal reliance on external testers.
3. Fault coverage and diagnosis accuracy – DFT ensures higher fault coverage by systematically targeting stuck-at, transition, delay, and transient faults, thereby improving the accuracy of fault localization and diagnosis.
4. Test cost and time optimization – By reducing dependence on complex external testing equipment and minimizing test cycles, DFT lowers manufacturing costs and accelerates the overall testing process in VLSI and SoCs.
5. Reliability and scalability – DFT supports the reliability of increasingly complex SoCs by enabling scalable testing strategies that can handle diverse modules, IP cores, and interconnects in heterogeneous architectures.

Fault Models in Digital Circuits

Fault models serve as abstractions that represent physical defects within digital circuits, enabling systematic generation of test patterns and fault diagnosis strategies. The most widely used model is the stuck-at fault, where a signal line is assumed to be permanently fixed at logic “0” or “1,” simplifying fault detection and automatic test pattern generation (ATPG) implementation. Transition and delay fault models extend this concept to timing-related defects, capturing issues such as slow-to-rise or slow-to-fall signals that impact circuit performance at higher clock frequencies. Bridging faults occur when unintended connections form between two or more signal lines, often leading to short circuits or logic errors.^[17] Open faults, such as broken interconnects or transistor-level disconnections, are especially critical in advanced technologies and require current-based or IDDQ testing for reliable detection. More recently, models for transient

and intermittent faults have gained importance, as circuits in nanometer regimes are increasingly vulnerable to environmental variations, aging effects, and soft errors induced by radiation. By providing a simplified yet practical view of defects, fault models form the foundation of both traditional and data-driven test methodologies, ensuring effective fault localization and diagnosis in VLSI and SoCs

Traditional Test and Diagnosis Strategies

Traditional test and diagnosis strategies in digital circuits were primarily developed to detect structural faults and ensure functional correctness with minimal hardware overhead. These approaches rely on predefined fault models and systematic application of test patterns to evaluate circuit behavior. Functional testing verifies whether the circuit performs according to its intended specification, whereas structural testing focuses on identifying specific defect types such as stuck-at, transition, or bridging faults.^[18] ATPG plays a crucial role in producing effective test vectors that maximize fault coverage, and scan-based testing improves observability and controllability by transforming sequential circuits into easily testable structures. Diagnosis methods, such as fault dictionaries and simulation-based comparisons, are used to isolate fault locations once an error is detected. Although effective for permanent and manufacturing-related faults, these traditional strategies face limitations in handling intermittent, transient, and aging-induced defects, which are increasingly common in deep submicron VLSI and SoC designs.

DATA-DRIVEN APPROACHES FOR FAULT LOCALIZATION

Data-driven approaches for fault localization leverage statistical learning, machine learning, and deep learning techniques to analyze test responses and identify faulty regions within a circuit. Unlike traditional rule-based methods that rely solely on predefined fault models, data-driven strategies exploit large volumes of simulation and measurement data to uncover hidden patterns that correlate with fault behavior.^[19] Supervised learning methods, such as support vector machines (SVM), decision trees, and random

forests (RF), have been widely applied to classify fault signatures and map them to potential fault sites. More recently, deep neural networks and convolutional architectures have been utilized to capture non-linear dependencies between input-output patterns and fault locations with higher precision. Feature extraction from current, voltage, and delay measurements, often enhanced by signal processing methods such as Fourier or wavelet transforms, further improves fault localization accuracy. By continuously learning from new fault scenarios, these approaches not only enhance diagnostic resolution but also reduce the reliance on exhaustive test patterns, making them well-suited for complex and large-scale VLSI and SoC designs.

Machine Learning-Based Fault Identification

Machine learning technique for link fault identification and localization.^[20] It is imperative to identify the features to be extracted from network traffic measurements for localizing link disconnections in the network link reconnection, and may correct the disconnected link resulting from the first stage in Figure 1. Below, describe the details of each stage.

Link disconnection classification

Different link disconnections may cause different traffic behaviors represented by the traffic measurements. The problem can be considered a multiclass machine learning classification problem. Where E is the set of links in the network.^[21] Thus, the total number of classes required for training the machine learning algorithm corresponds to the number of network links, with each class representing a specific link fault to be detected and localized in the network. Three traffic features and train the learning model using one of the following machine learning algorithms.

- SVM is a supervised machine learning technique that tries to separate data points into two different classes by identifying the best possible separating hyperplane.
- RF is a classifier algorithm that constructs multiple decision trees during the training phase and outputs the mode of the individual trees as the class label.

Machine learning algorithms that can be used for a classification problem, SVM, RF, have demonstrated their best performance over other algorithms.

Link fault identification

To identify the link fault, we estimate the end-to-end delay of the network traffic caused by the disconnection of the tentative link L1, using aggregate flow rates captured from the network. The estimated end-to-end delay is compared with the actual delay captured from the network.

Link reconnection classification

That a link reconnection has been identified by the second stage, the third stage of ML-LFIL localizes both the disconnected link (L2) and the reconnected link (L3) using a link reconnection classifier. The disconnected link L2 might be different or the same as the tentative disconnected link L1, depending on the accuracy of the link disconnection classifier. Similar to link disconnection classification, link reconnection classification in the third stage of ML-LFIL (ML-LFIL-S3) is also a multiclass machine learning classification problem.

Deep Learning Architectures for Fault Mapping

The categorization of major DL-based approaches used in intelligent FDP. According to the supervision type, they can be divided into unsupervised methods and supervised methods. The former tries to find the inherent common pattern within data, which are unlabeled, while the latter refers to methods that learn highly nonlinear relationships between the input data and its paired labeled output.^[22] More specifically, the supervised methods can be further divided into processing of specific data types or extraction of distinctive features, depending on their objectives. Their details are expanded in the following sections in Figure 2.

DL architectures include deep belief networks, autoencoders, convolutional neural networks, and RNNs. With the rapid development of DL techniques in recent years, many new architectures

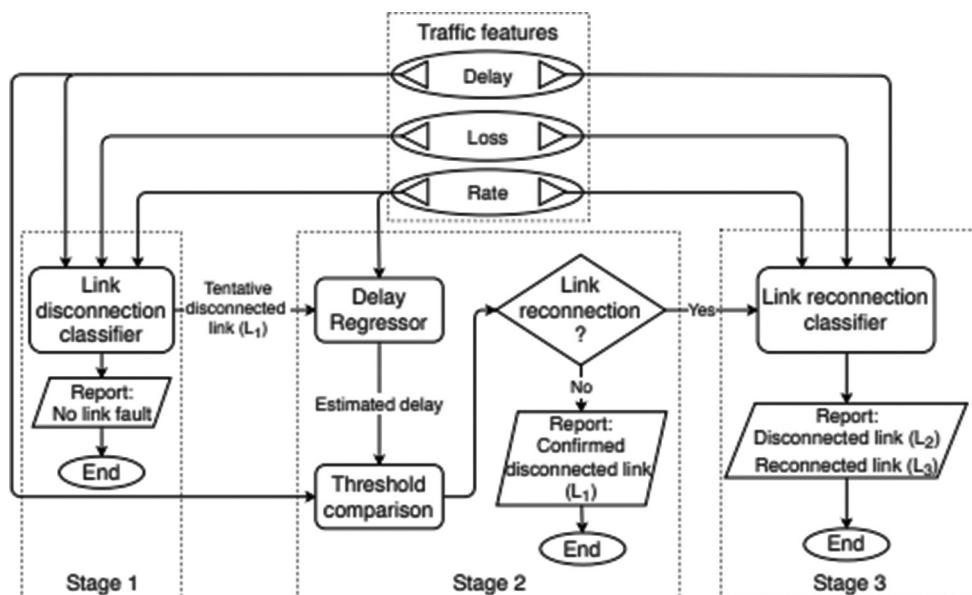


Figure 1: Block diagram of machine learning fault identification and localization

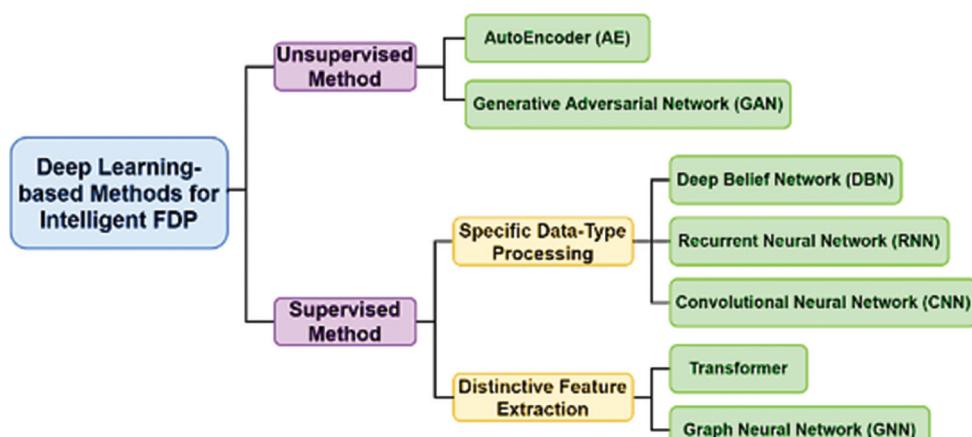


Figure 2: The categorization of deep learning techniques in intelligent FDP

have been proposed and introduced into the tasks of intelligent industrial FDP. Examples are generative adversarial networks, transformers, and graph neural networks.

Statistical and Probabilistic Inference Methods

Four probabilistic models applied in the field of FDD are illustrated, including probabilistic PCA, probabilistic PLS, probabilistic ICA, probabilistic canonical correlation analysis (CCA), and probabilistic Fisher discriminant analysis (FDA). PCA extracts the principal components that are retained to explain the majority of the variability in the data by maximizing the variance. Compared to PCA, the FDA maximizes the separation among classes while minimizing the separation between classes.^[23] The components after PCA decomposition are orthogonal and therefore irrelevant, but independence is not guaranteed. Compared to PCA, ICA can find the original components in the observed mixtures, and it is a linear transformation of the data in the original feature space. PCA involves only one set of variables, whereas CCA extends to the interdependence between two sets of variables, measuring the correlation between the two sets of variables.

Bioenergy refers to electricity, gas, and fuels generated from organic matter, known as biomass, which includes plant material, timber, agricultural residues, food waste, and sewage. Biomass energy can be used for electricity generation, heating, and transportation and is renewable in nature. Owing to its wide applicability and availability, biomass accounts for approximately 75% of global renewable energy production.^[7] Furthermore, bioenergy is often considered carbon-neutral, as it does not add net carbon dioxide to the atmosphere, and it can reduce landfill waste by up to 90% through the combustion of solid waste. However, biomass fuels are not entirely clean, may contribute to deforestation, and are generally less efficient than fossil fuels. Effective management and planning are therefore essential to maximize their potential while mitigating associated drawbacks.

DATA-DRIVEN APPROACHES FOR FAULT DIAGNOSIS

Data-driven approaches present challenges due to the complexity of specific systems, where

traditional methods may be impractical due to limitations in modeling or available expertise. Data-driven techniques leverage AI and machine learning to extract insights directly from data, complementing traditional methods with adaptability and scalability.^[24] This evolution highlights the transformative role of AI and ML in FDD, as detailed in the following section. AI involves creating systems that possess human-like cognitive functions such as learning, reasoning, and problem-solving. Its application ranges widely from autonomous vehicles to healthcare diagnostics. On the other hand, ML is a crucial subset of AI that enables machines to learn from data, thereby revolutionizing the way complex problems are tackled. It includes techniques such as logistic regression and neural networks, which are essential in various industries, including fault detection and process optimization

Classification of Fault Diagnosis Methods

There is a great quantity of literature on dynamic systems fault diagnosis, ranging from analytical methods to artificial intelligence and statistical approaches. From a modeling perspective, there are methods that require accurate system models (plants), quantitative models, or qualitative models. However, there are methods that do not require any form of model information and rely only on historical system data. Classification of fault diagnosis methods is presented in this paper based on the contributions of various researchers. This classification of fault diagnosis methods is shown in Figure 3. Fault diagnosis methods are broadly classified into three main categories: Model-based, hardware-based, and history-based.

While there have been some excellent reviews in the field of fault diagnosis, it is of interest that the classification of fault diagnosis methods is very often not consistent. This is mainly due to the fact that researchers are often focused on a particular branch, such as analytical models, of the broad discipline of fault diagnosis.

Bayesian and Graph-Based Models

The fault diagnosis scheme based on a Bayesian network proposed in this paper is designed to localize faulty system components that cause

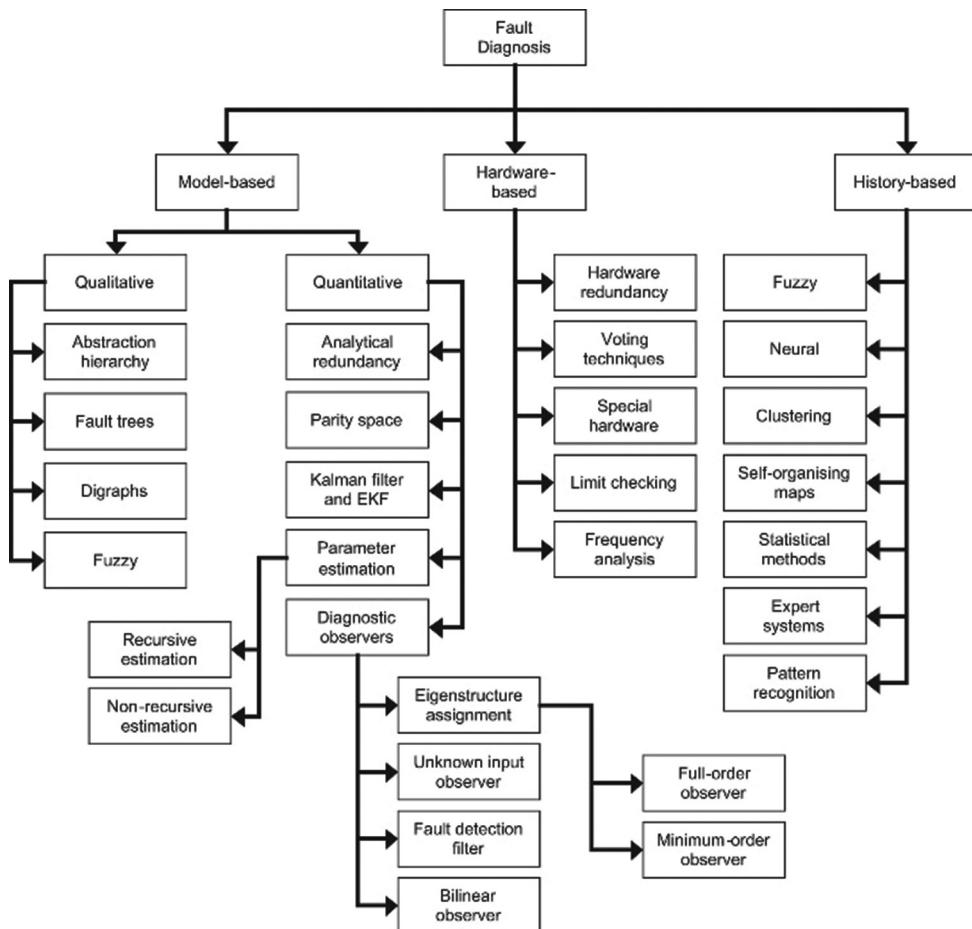


Figure 3: Classification of fault diagnosis methods

abnormal behaviors of a system or process, rather than generating an initial fault candidates' set.^[25] A probability distribution, which is computed through the Bayesian network with given evidence, is attached to each system component. Hence, the ranking of faulty system components can be achieved. Faulty system components to be localized are represented as hypothesis variables in the network, and system measurements are input to the network through the corresponding information variables. This has a close relation with the bond graph model. Components in a bond graph are represented as C, I, or R elements, whereas system measurements are represented as corresponding effort or flow in the bond graph.

Figure 4 illustrates the fault diagnosis scheme based on a Bayesian network. A bond graph model from the system concerned is used to construct a Bayesian network for localizing faulty system components. Once the structure of the diagnostic Bayesian network is known and the necessary CPDs are acquired from either historical data or expert knowledge, the Bayesian fault diagnosis module is activated. System measurements are

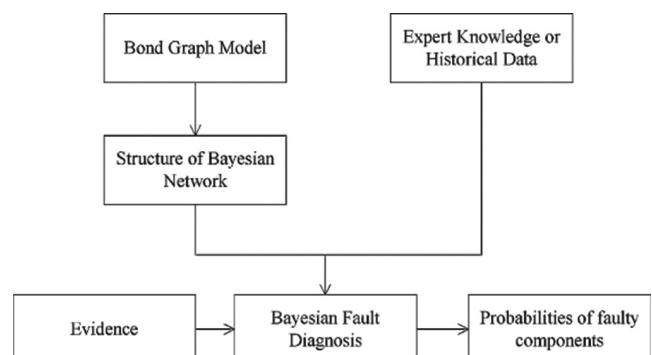


Figure 4: The proposed fault diagnosis based on a Bayesian network

provided to the Bayesian fault diagnosis module as evidence inputs to the network.

Hybrid Fault Diagnosis Approach

Model-based, signal-based, and knowledge-based fault diagnosis methods have their distinctive advantages and various constraints. Specifically, model-based fault diagnosis can monitor and diagnose unknown faults using a small amount of real-time data, but it requires an explicit model representing the input-output relationship;

the diagnosis performance relies on the model accuracy.^[26] On the other hand, signal-based and knowledge-based approaches do not require an explicit or complete model, which are particularly suitable for monitoring and diagnosis for complex industrial processes where explicit system models are unavailable or challenging to derive. The signal-based method generally extracts the major features of the output signals for fault diagnosis, but it pays less attention to system dynamic inputs, whose diagnosis performance may thus be degraded under unknown input disturbances or unbalanced conditions. Due to the high dependence on a large amount of historical data for training, the knowledge-based method suffers from high computational costs and may not work well for identifying unknown fault types.

Challenges in Data-Driven Fault Localization and Diagnosis

Data-driven fault localization and diagnosis in modern circuits are hindered by numerous technical and practical limitations that arise from the growing complexity and variability of the design. These issues have an impact on the performance, scalability, and trustworthiness of machine learning-based diagnostic methods when used in various technologies. The main challenges are outlined below and clarified:

Limited availability of labeled fault data

Data-driven models, notably deep learning architectures, need a massive amount of precisely labeled faulty data to be trained. However, in the case of real semiconductor setups, it is quite challenging to come up with such datasets.^[27] Artificial data can be created through fault injection, yet it is usually incapable of representing the complexity and variability of the actual silicon defects.

Data imbalance and noise in test response

Most of the devices are without faults, and defective samples make up only a very small part of the dataset.^[28] Such an imbalance makes machine learning models biased toward predicting fault-free behavior and thus less sensitive to rare but important failures. In addition, test responses can include noise due to environmental changes,

measurement inaccuracies, and intermittent behavior.

Data availability and quality

Accurate ML models are only possible if we have high-quality runtime telemetry data. Yet there are issues of privacy concerns, lack of standardization over the broad range of various SoC architecture designs, and noisy or missing telemetry data as obstacles to data collection. This poor quality of data can have negative effects on the model's performance.

Scalability challenges for large and complex SoCs

Modern SoC architectures entail a staggering number of transistors in the billions, various IP cores, and different functional blocks, which in turn makes fault diagnosis an intricate challenge of a very high degree.^[29] The data-driven approaches have to handle very large test data sets, circuit graphs, and fail logs, all of which require a substantial amount of computational resources. Deep neural networks and graph-based learning techniques might find it difficult to scale efficiently with the growth of the circuit size.

Difficulty in modeling dynamic and transient fault

Transient faults, intermittent defects, and failures caused by aging are inherently non-pattern phenomena; hence, it is quite a challenge to use fixed learning models to capture them. Such faults can happen at random intervals due to changes in the environment, cosmic radiation events, or the natural aging of the device. Conventional data-driven models that are trained on static datasets rarely have the capability to detect or anticipate these faults.

LITERATURE REVIEW

This literature summary synthesizes recent advancements in data-driven fault localization and diagnosis within DFT-enabled circuits, emphasizing neural networks, hybrid analytical approaches, and probabilistic models.

Wu *et al.* propose a model-based fault detectability analysis method to establish the measurement conditions necessary for reliably detecting various fault types. Utilizing these measurement condition constraints, a mechanism-enhanced neural

Table 1: Summary of a study on data-driven methods for fault localization and diagnosis in DFT-enabled circuits

Author	Study on	Approach	Key findings	Challenges	Future directions
Wu <i>et al.</i> , (2025)	Fault detectability analysis with mechanism-enhanced neural networks	Model-based detectability constraints + NN for parameter fitting	Ensures interpretability and reduces training samples needed by integrating circuit models	Requires accurate modeling of measurement constraints; limited by complex fault interactions	Extend to large-scale SoCs and adaptive online training
Jois and V, (2024)	DFT strategies for improved testing	Integration of JTAG, IJTAG, MBIST, repair modules, boundary scan + ATPG	Enhances testing efficiency and robustness with security features in IJTAG	Overhead in integrating multiple modules; vulnerability to evolving security threats	Develop low-overhead, AI-assisted secure DFT frameworks
Lai <i>et al.</i> , (2024)	Hybrid diagnosis of open-circuit transistor faults in inverters	Analytical models + neural networks (offline training, online simulation)	Accurate diagnosis of single and multiple transistor faults using a combined offline-online strategy	Dependence on accurate modeling and simulation; computational cost	Real-time hardware implementation and adaptive learning models
Hamatwi <i>et al.</i> , (2023)	High impedance fault detection in distribution networks	Comparative evaluation of DFT, DWT, and power spectrum methods in MATLAB/Simulink	Identified suitable techniques for detecting high impedance faults under varying conditions	Sensitivity to noise and operational variability	Develop hybrid multi-resolution detection methods with ML integration
Fang <i>et al.</i> , (2022)	Fault diagnosis in multiphase inverters	FFT + Relief algorithm for feature extraction + RVFL neural network	High-accuracy diagnosis with reduced computational cost	Dependence on precise feature extraction; limited generalization	Apply deep learning and transfer learning for broader applicability
Jiang (2021)	Probabilistic fault location in power distribution	Data-driven MILP with multiple sensor inputs (IEDs, SCADA, smart meters)	Improved fault location accuracy by leveraging probabilistic sensor data fusion	High complexity of MILP; real-time implementation issues	Scalable probabilistic frameworks for smart grids with adaptive data fusion

RVFL: Random vector functional link, FFT: Fast Fourier transform, IEDs: Intelligent electric devices, MILP: Mixed integer linear programming, DFT: Design-for-testability

network is designed to locate faults by fitting the changes in fault parameters. The consistency between the fitting fault parameters and the actual fault process ensures the interpretability of the diagnosis results, guaranteeing the identification of fault parameters. The fault circuit model assists in training, significantly reducing the number of actual fault samples required for mechanism-enhanced neural network training.^[30]

Jois and V (2024) are implementing DFT techniques to enhance testing efficiency and effectiveness. Key components such as JTAG-compliant Registers, IJTAG-controlled Segment Bits, Memory BIST, Memory repair modules, and Boundary Scan mechanisms are strategically integrated into the design. ATPG and thorough simulations validate the effectiveness of these DFT strategies, the importance of the requirement and design of the security feature for the IJTAG network to provide protection against unauthorized access of the network, and ensure the improvement in robustness of the IC.^[31]

AQ6 *Lai et al.*, a hybrid method for diagnosing single and multiple transistor open-circuit faults in grid-tied three-phase voltage source inverters. Combining explicit variable relationships in analytical models with the non-linear regression capability of neural networks, the method comprises offline model

training and online fault diagnosis sections. The offline section constructs a neural network model based on analytical model variables, using closed-loop system samples to predict fault characteristics. In the online part, the predictive model is applied to the Simulink online simulation platform.^[32]

AQ6 *Hamatwi et al.*, the performance of three high impedance fault detection techniques for the case of a distribution network, to select the technique that is best suited for detecting faults in this network. Discrete Fourier transform, discrete wavelet transforms, and the power spectrum, among other techniques, were selected. The distribution network was modeled in MATLAB/Simulink, along with the high impedance fault condition. These fault detection techniques were modeled and applied separately to the distribution network under different operating conditions: High impedance fault, load switching, and normal operation.^[33]

Fang *et al.* proposed a data-driven scheme based on a random vector functional link (RVFL) network with data dimension reduction capability to diagnose the power switch open-circuit faults of the multiphase inverter. The enhanced fast Fourier transform, considering the rotational speed of the motor, is adopted to extract the phase current features precisely, and then the dimensions of the

data are reduced through the Relief algorithm. At last, the faults are detected and diagnosed by the RVFL network. Simulation experiments and comparison analysis are conducted on a six-phase permanent magnet synchronous motor drive system, which demonstrates that the proposed method can effectively extract fault features and achieve high accuracy while reducing the computational effort.^[34]

AQ6

Jiang is a data-driven probabilistic fault location methodology based on comprehensive sensing measurement from digital relays at substations, intelligent electric devices (IEDs) along primary feeders, SCADA sensors in the feeder circuit, and smart meters at customers' premises. Statistics of historical fault location accuracies by digital relays and IEDs are used to estimate fault location errors. Multiple-hypothesis analysis is implemented to handle the uncertainties from SCADA sensors and smart meters. The spatial correlation between the potential fault location and collected sensor data is modeled as a mixed integer linear programming problem.^[35]

Table 1 presents a comparative summary of recent studies on data-driven fault localization and diagnosis in DFT-enabled circuits, highlighting applied approaches, key contributions, associated challenges, and prospective research directions.

CONCLUSION AND FUTURE WORK

Design-for-test in scalable and high-performance network-on-chip architectures is a critical aspect. Testing is still a crucial issue in VLSI and SoC designs, which are the main sources of functionality, reliability, and long-term system sustainability. Various methodologies, such as fault models, ATPG, scan-based testing, and BIST, have evolved over the years to provide structured approaches for FDD. However, the increasing complexity of the design makes traditional techniques less scalable, efficient, and capable of handling transient or intermittent faults. To overcome these problems, DFT principles have been implemented in large-scale systems, thus improving controllability, observability, and fault coverage. Moreover, the latest developments in data-driven methods, especially machine learning and probabilistic approaches, give the localization of faults a new direction in terms of accuracy and adaptability. The integration of classical

DFT tactics with contemporary intelligent frameworks is a landmark transition toward comprehensive test solutions. However, there are still limitations in scaling to heterogeneous SoCs and guaranteeing real-time diagnosis. The future should, among other things, concentrate on the integration of resourceful and adaptive fault detection models that are capable of working with advanced DFT architectures so as to take care of the issue of scalability in very complex SoCs. The point of the hybrid methods that merge the conventional strategies with the AI-driven ones should be the real-time diagnosis, the hardware overhead reduction, and the energy-efficient fault localization, i.e., in this way, the last-mentioned three problems will be resolved.

REFERENCES

1. Neupane D, Bouadjenek MR, Dazeley R, Aryal S. Data-driven machinery fault diagnosis: A comprehensive review. Neurocomputing 2025;627:129588.
2. Gowda MR. Fault simulation for design for testability inserted designs. Indones J Electr Eng Comput Sci 2023;29:658-68.
3. Maruthi V, Ganesh L. Observability-driven SRE practices for proactive database reliability and rapid incident response. Int J Recent Innov Trends Comput Commun 2019;7:32-8.
4. Patel R. Survey of digital twin applications in predictive maintenance for industrial. Int J Recent Technol Sci Manag 2024;9:77-86.
5. Prajapati V. Improving fault detection accuracy in semiconductor manufacturing with machine learning approaches. J Glob Res Electron Commun 2025;1:20-5.
6. Garg S. AI-driven innovations in storage quality assurance and manufacturing optimization. Int J Multidiscip Res Growth Eval 2020;1:143-7.
7. Wu Y, Liu Y, Yin Y, Zeng M, Ye Z, Zhang X, et al. SmartFL: Semantics based probabilistic fault localization. IEEE Trans Softw Eng 2025;51:2161-80.
8. Gao Z, Member S, Cecati C, Ieee F, Ding SX. IEEE transactions on industrial electronics a survey of fault diagnosis and fault - tolerant techniques part I : Fault diagnosis with model - based and signal - based approaches. Magazines 2015;62:3757-67.
9. Matetić I, Štajduhar I, Wolf I, Ljubic S. A review of data-driven approaches and techniques for fault detection and diagnosis in HVAC systems. Sensors (Basel) 2023;23:1-37.
10. Patel Rutvik RT. Advancements in data center engineering : Optimizing thermal management. HVAC systems, and structural reliability. Int J Res Anal Rev 2021;8:991-6.
11. Rajavel V. Integrating power-saving techniques into design for testability of semiconductors for power-efficient testing. Am J Eng Technol 2025;7:243-51.

12. Rosato A, Piscitelli MS, Capozzoli A. Data-driven fault detection and diagnosis: Research and applications for HVAC systems in buildings. *Energies* 2023;16:854.
13. Suyambu MR, Vishwakarma PK, Gupta S. Machine Learning Approaches for Fault Detection in Switchgear Equipment. In: 2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI); 2025. p. 1-6.
14. Panchal V. Mobile SoC power optimization : Redefining performance with machine learning techniques. *Int J Innov Res Sci Eng Technol* 2024;13.
15. Vivek Kulkarni KS, Venna S. Design for testability in VISI. *Int J Innov Res Technol* 2025;11:874-77.
16. Thakur G, Jain S, Sohal H. Current issues and emerging techniques for VLSI testing - a review. *Meas Sensors* 2022;24:100497.
17. Anoop S, Ajeesh S, Deebu US. Deep learning-powered fault detection in digital VLSI circuits: Advancements and applications. *Int J Creat Res Thoughts* 2023;11: 257-64.
18. Ojha AK. AI-augmented fault detection and diagnosis in VLSI circuits: A step toward intelligent chip design. *J Artif Intell Mach Learn Neural Netw* 2024;46:39-46.
19. Quispe-Astorga A, Coaqueira-Castillo RJ, Utrilla Mego LW, Herrera-Levano JC, Concha-Ramos Y, Sacoto-Cabrera EJ, *et al.* Data-driven fault detection and diagnosis in cooling units using sensor-based machine learning classification. *Sensors (Basel)* 2025;25:3647.
20. Samanta A, Chowdhuri S, Williamson SS. Machine learning-based data-driven fault detection/diagnosis of lithium-ion battery: A critical review. *Electron* 2021;10:1309.
21. Srinivasan SM, Truong-Huu T, Member S. Machine learning-based link fault identification and localization in complex networks. *IEEE Int Things J* 2019;6:6556-66.
22. Qiu S, Cui X, Ping Z, Shan N, Li Z, Bao X, *et al.* Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems: A review. *Sensors* 2023;23:1305.
23. Zhu Y, Zhao S, Zhang Y, Zhang C, Wu J. A review of statistical-based fault detection and diagnosis with probabilistic models. *Symmetry (Basel)* 2024;16:455.
24. Leite D, Andrade E, Rativa D, Maciel AM. Fault detection and diagnosis in industry 4.0: A review on challenges and opportunities. *Sensors (Basel)* 2025;25:60.
25. Lo CH, Wong YK, Rad AB. Bond graph based Bayesian network for fault diagnosis. *Appl Soft Comput J* 2011;11:1208-12.
26. Gao Z, Cecati C, Ding SX. A survey of fault diagnosis and fault-tolerant techniques-part II: Fault diagnosis with knowledge-based and hybrid/active approaches. *IEEE Trans Ind Electron* 2015;62:3768-74.
27. Berenji A, Taghiyarrenani Z, Bastami A. Fault identification with limited labeled data. *J Vib Control* 2023;30:1502-10.
28. Brishti F, Zhang F, Mohammed S, Bai L, Wu F, Chen B. Imbalanced classification with label noise: A systematic review and comparative analysis. *ICT Express* 2025;11:1127-45.
29. Shivashankar K, Hajj G, Martini A. Scalability and Maintainability Challenges and Solutions in Machine Learning: Systematic Literature Review. [Preprint]; 2025.
30. Wu F, Chen K, Qiu G, Ying H, Sheng H, Wang Y. Detectability based data-driven fault diagnosis method for multiple device faults of converters. *IEEE Trans Power Electr* 2025;40:5983-98.
31. Jois SV, RAHV. Robust and Efficient Implementation of Design for Testability in Integrated Circuits. In: 2024 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS). IEEE; 2024. p. 1-5.
32. Lai S, Chen G, She Z, Mo L, Qing X. A Hybrid Model and Data-Driven Approach for Online Diagnosis of Open-Circuit Faults in Grid-Tied Three-Phase VSIs. In: 2024 IEEE International Conference on Industrial Technology (ICIT); 2024. p. 1-6.
33. Hamatwi E, Imoru O, Kanime MM, Kanelombe HS. Comparative analysis of high impedance fault detection techniques on distribution networks. *IEEE Access* 2023;11:25817-34.
34. Fang L, Liu Z, Jiang D, Qu R. A Data-Driven Fault Diagnosis Method with Dimension Reduction Capability for Inverter Open-circuit Fault of Multiphase Drive Systems. In: 2022 4th International Conference on Smart Power and Internet Energy Systems (SPIES); 2022. p. 587-92.
35. Jiang Y. Data-driven probabilistic fault location of electric power distribution systems incorporating data uncertainties. *IEEE Trans Smart Grid* 2021;12: 4522-34.

Author Queries???

AQ6: Kindly review the sentence as it seems to be incomplete.