
 ISSN 2581 – 3781

 Available Online at www.ajcse.info

 Asian Journal of Computer Science Engineering 2025;10(2):1-9

 REVIEW ARTICLE

A Review of API Management Systems and Their Role in Seamless

Integration Between Software Applications

 Mahi Ratan Reddy Deva*
 Independent Researcher

Received on: 13-04-2025; Revised on: 25-05-2025; Accepted on: 17-06-2025

Abstract—Application Programming Interfaces (APIs) have

become essential in modern software ecosystems, enabling

seamless integration, interoperability, and scalability across

applications and services. However, as API adoption increases,

challenges related to security, performance, and governance

arise, necessitating effective API management systems. This

study explores the taxonomy of APIs, their evolving role in

software integration, and the significance of API management

solutions in addressing these challenges. Key components of API

management, including API gateways, monitoring, security

enforcement, and lifecycle governance, are examined.

Furthermore, the study highlights emerging trends such as AI-

driven API orchestration, decentralized API architectures, and

automated security protocols. By analyzing API management's

impact on software ecosystems, this research provides insights

into best practices for optimizing API-driven digital

transformation.

Keywords—Application Programming Interfaces (APIs), API

Management, API Gateways, API Security, Authentication.

I. Introduction

A key component of contemporary software development
in the digital age, Application Programming Interfaces (APIs)
facilitate the smooth integration of apps, services, and
systems. APIs define standardized functions and protocols
that facilitate interoperability, scalability, and secure data
exchange across distributed environments. Their role as
digital connectors allows businesses to enhance functionality,
improve efficiency, and foster innovation through third-party
service integrations[1].

With the increasing adoption of cloud computing, IoT, and
AI, APIs serve as critical enablers of real-time data exchange
and interoperability. API-driven development has become the
foundation of digital ecosystems, allowing organizations to
expand market reach and create new revenue streams by
opening their platforms to third-party developers. In sectors
such as finance, e-commerce, and enterprise applications,
APIs streamline digital transactions and enhance customer
experiences, demonstrating their transformative business
impact[2].

However, API management has become a critical aspect
of software ecosystems, ensuring the secure, efficient, and
scalable use of APIs. Organizations leverage API
management systems to govern access, monitor performance,
enforce security policies, and enable seamless connectivity
between applications. RESTful APIs, known for their
simplicity and scalability, remain dominant, while Graph QL
is gaining popularity in data-rich environments[3].

Thus, API management systems serve as the foundation
for seamless software integration by optimizing API
lifecycles, enhancing performance, and securing digital
transactions. To keep up with the ever-changing digital
ecosystem, organizations will need API management
solutions that include intelligent orchestration, automated
security standards, and decentralized API designs[4].

Motivation of the Study

APIs are crucial for seamless integration in modern digital
ecosystems, but without proper management, it pose security,
scalability, and performance challenges. API management
systems ensure secure access, efficient traffic control, and
lifecycle governance, enabling businesses to optimize
interoperability and innovation. With industries increasingly
adopting API first strategies, understanding API
management's role in enhancing security, scalability, and
digital transformation is essential.

Structure of the paper

This paper is organized in the following way: Section II
categorizes APIs and analyzes their characteristics. Section III
explores API management systems, including architecture,
key components, and evolution. Section IV discusses API
management’s role in software integration, covering security,
authentication, and monitoring. Section V examines
challenges such as security, scalability, and legacy integration.
Section VI wraps up with important results and suggestions
for further study.

II. API Taxonomy and Management for Seamless

Software Integration

A key component in enabling interaction between various
services and products is an API. A substantial portion of a
company's income comes from APIs. For instance, modern
APIs conform to standards that are readily available and
understood, which is one of the many qualities that have made
them very important and helpful. Such application
programming interfaces are well-structured and tailored to a
certain audience via the use of their own Software
Development Life Cycle (SDLC)[5].

The most popular API is undoubtedly the web-based kind.
The service facilitates communication between web apps that
must communicate with one another via the Internet[6]. The
vast majority of APIs are these. Web APIs have proliferated
online due to the prevalence of the Web as a platform.
Technology and the need for enhanced services have been

http://www.ajcse.info/

driving forces in the growth of modern networks. As a result,
additional application criteria have become necessary.

Figure 1 shows the API taxonomy. Numerous Web
formats and standards have emerged as a result of the meteoric
rise in API use on the Web[7]. The advent of JavaScript
Object Notation (JSON) has forced an increase in the reliance
on Hypertext Transfer Protocol (HTTP) from the previously
dominant format, Simple Object Access Protocol (SOAP)
among business APIs. As a result, RPC (Remote Procedure
Call) APIs that use JSON have become more popular. The
RESTful API is now the industry standard for web
applications[8]. API implementations in Java are one
example. Another name for class APIs is library-based API.
These specialized APIs provide certain data and the actions
associated with it. Such APIs are available from the Java
programming community.

Fig. 1. Taxonomy/Classification of APIs.

A. Taxonomy of Web APIs

A web service makes its services accessible via a World
Wide Web URI or URL[9]. The presentation of the data to
other apps is the most important aspect since it facilitates
comprehension. Data exchanged by a web service occurs over
HTTP and HTTPS. The program makes an HTTP request,
including the necessary arguments and the URL as a path, and
the web service returns an HTTP response. Just a few data
formats are widely used, including XML and JSON. "Data
serialization" describes the steps used to transform data into a
format that may be easily transferred.

• The SOAP is both a protocol and a framework for
messages. It facilitates application-to-Web
communication. If a SOAP client can accept the
requests, then SOAP may be used with any protocol.
The use of XML and WSDL is crucial to its operation.

• Additionally, XML-RPC RPC APIs are simpler to set
up in comparison to SOAP. When making calls via
HTTP, the XML-RPC is a necessary component since
it forms the foundation for SOAP.

• JSON-RPC Original intent was to facilitate client-
browser communication using a message system
similar to AJAZ. In subsequent revisions, JSON was
improved to provide a more suitable format for
deserialization by making it easier to record data types
and states.

• Built-in protocols are a boon to RESTful APIs. The use
of HTTP is maximized. Adaptability to various kinds
of requests, return data formats, and hypermedia
structures is made possible by REST since data is not
reliant on its methods or resources.

Table 1 shows a concise summary of the advantages and
disadvantages of REST, SOAP, and RPC APIs. Unlike SOAP,
which is limited to the XML format, REST may return data in
any format, including JSON. REST users do not have to be
familiar with the names of the procedures and their arguments
in the same sequence as RPC users. On the other hand, REST
lacks the capacity to save state, including sessions.

Table 1: Summarizes the strengths and weaknesses of SOAP, RPC and

REST APIs.

Description SOAP RPC REST

Library support Requires a

SOAP library

on client

TightlyCoupled No library

support needed,

typically used
over HTTP

Type of data

support

Not strongly

supported by
all languages

Can return any

format

Returns data

without exposing
methods

Method

exposure

Exposes

operations/me

thod calls

Requires user to

know procedure

names

Supports any

content-type

Format Larger

packets of

data, XML
format is

required

Specific

parameters and

order

NotNeeded

Resource
connections

WSDL - Web
Service

Description

Requires a
separate

URI/resource

for every
action/method

Single resource
for multiple

actions

Connection

Type

All calls sent

through

POST

Typically

utilizes just

GET/POST

Typically uses

explicit HTTP

ActionVerbs

Documentation Not Necessary Require

extensive

documentation

Documentation

can be

supplemented
with hypermedia

Session Type Stateless or

Stateful

Stateless Stateless

Ease of use Most difficult

for developers
to use

Easy for

developers to
get started

More difficult for

developers to use

III. Understanding API Management Systems

Different APIs stand for different types of application
programming interfaces, which might include different ideas.
APIs, or interfaces among modules, were its foundation. APIs
have been described as " the interface to an externally
distributed, reusable software item that is utilized by several
customers outside of the creating organization" in previous
endeavors. There is terminology to describe certain kinds of
APIs, while the word "API" may be used generically to
describe any interaction between software components[10].

Fig. 2. API Workflow

In Figure 2 collection of instructions, functions, protocols,
and objects make up an API. It carries out routine tasks to
communicate with external systems. API is adaptable, user-
friendly, and effective[11]. Web, mobile, and SaaS programs

rely on APIs to connect modules, software, and developers
[12].

The API management system provides visibility and
monitoring capabilities[13] to handle privacy and security
concerns, and it also provides audit trails that record the use
of its APIs[14].

API management is a critical component of modern digital
ecosystems, enabling organizations to efficiently control,
monitor, and secure their APIs. Figure 3 illustrates key aspects
of API management[15], highlighting essential functionalities
such as partner onboarding, security, Mobile Backend as a
Service (MBaaS), governance meetings, monitoring,
management, developer support, and mediation.

Fig. 3. API Management

A. Evolution of API management system

In the rapidly evolving landscape of enterprise technology,
APIs have emerged as the cornerstone of modern digital
architectures[10]. This technical exploration delves into the
transformative role of APIs in contemporary integration
strategies and examines how API management platforms are
reshaping enterprise connectivity.

B. Components of API management system

A collection of procedures, methods, and tools for
managing APIs in a safe and extensible service architecture is
known as API management. The following are the primary
parts of an API management system:

• API Portal: The API enhancement lifecycle, API
control, profile, and distribution may all be managed
with this configuration-time administration tool.

• API Gateway: This is a tool for managing APIs during
runtime, which includes features like security, multi-
tenure, and steering.

• API Service Manager: This tool is designed to
manage the many stages of an API's lifespan, including
dynamic formation, relocation, setup, arrangement,
and API updates[16].

• API Monitor: This is a component of the API runtime
administration segments that measure the API runtime
practices, such as execution and utilization. The API
billing or chargeback system is designed for open APIs
that are organized by utilities.

C. Purpose of API management system

• API management is the process by which businesses
create, publish, and release their APIs to the
development community.

• API Management features, including lifecycle
management, authentication and access to APIs,
monitoring, throttling, and consumption analysis[17].

• An API gateway generally facilitates their
implementation via an integrated platform, which in
turn provides security and documentation[18].

IV. The Role of API Management in Software

Application Integration

Security, scalability, effective utilization, governance, and
control over the lifespan of an API are all responsibilities of
API administration. A collection of procedures, methods, and
tools for managing APIs in a safe and extensible service
architecture is known as API management. The fundamental
parts of the API management system are the API Gateway,
API Portal, API Service Manager, API Monitor, and API
Billing. By offering a systematic strategy for developing,
implementing, protecting, and monitoring APIs, API
management is essential to guaranteeing smooth interaction
across software applications[19].

Key Aspects of API Management in Integration:

A. API Gateways

The foundation of every API management system is an
API gateway, which allows digital applications and back-end
services to communicate in a safe, flexible, and dependable
manner. As RESTful APIs, it facilitates the exposure, security,
and management of back-end data and services.

Fig. 4. API Gateways

API Gateway architecture is shown in Figure 4, which
serves as an intermediary between client applications and
backend services, streamlining communication and enhancing
security[20]. On the left side, various client applications,
including web apps[21], mobile applications, and
partner/public apps, interact with the API Gateway using
different communication protocols, such as JSON over HTTP
and SOAP over HTTP.

B. Security and Access Control Mechanisms in API

Management

APIs allow users to have access to sensitive information
and resources. The security of APIs is crucial in preventing
unauthorized and unauthenticated access to assets.

1) Authentication Mechanisms

Authentication mechanisms are crucial for verifying the
identity of users and applications accessing an API.
Authentication is the procedure for checking a client's
identification in a certain way [22].

Fig. 5. Authentication Flow using OpenID Connect

As shown in Figure 5, the OpenID Connect authentication
flow begins with the user signing in with their credentials.
Upon successful authentication, an authorization code and
token are returned, and the user is redirected to the ReplyURL,
where the id_token is validated, and a session cookie is
set[23].

2) Authorization and Role-Based Access Control

An app's degree of access and the resources and methods
it may call via the API are both controlled by authorization.
Authorization may be implemented by the organization via the
generation of access tokens or through the use of other
protocols and techniques[24].

C. Monitoring and Analytics:

Comprehensive monitoring and analytics capabilities have
become essential components of successful API management
strategies. Organizations implementing advanced API
monitoring solutions have reported significant improvements
in their ability to detect and resolve issues proactively[25].

Performance optimization capabilities have become a
cornerstone of modern API management platforms, with
organizations reporting significant improvements in API
reliability and response times[25][26].

V. Challenges in API Management and Integration

API management plays a crucial role in ensuring seamless
communication between software applications[27]. However,
several challenges arise in managing and integrating APIs
effectively. Applications with integrity and security issues
cannot be adopted [28]. These challenges must be addressed
to ensure an integrity, confidentiality and availability of data
within an organization.

• Data Privacy Concerns: Data privacy regulations
must be complied. The well-known regulations
include HIPAA or GDPR. These regulations impose a
strong impact on the success or failure of any
organization. Compliance with regulation is
compulsory for any organization[29].

• Authentication and Authorization: RBAC is very
important for API security[30]. It ensures that the user
has appropriate permission to do anything in the
system. The definition and management of roles
efficiently is a big challenge[24]. Organizations must
establish a check and balance system for role defining
and implementation to tackle such challenges.

• Scalability Challenges: With the development of API
demands, organizations are facing scaling challenges.
To face such challenges, organizations should develop
and optimize relevant systems to process requests on
time[31].

• Caching Mechanisms: Caching mechanisms are also
a positive system to tackle scalability challenges.
Caching means providing responses to requests of the
same types through temporary storage. It helps
organizations tackle scalability issues and optimize
response time.

• Performance Issues in API Management: It is also a
big concern during the Enterprise Integration of API
and API management. APIs are implemented to tackle
slow systems and enhance the workability of any
organization. If the API doesn't process requests on
time and does not use effective strategies to optimize
resources, it may develop challenges for the
organization.

• Technical Challenges: Issues such as security
vulnerabilities, performance bottlenecks, scalability
concerns, and compatibility problems (including
versioning and standardization) that arise when
integrating disparate applications via APIs.

• Process Challenges: Difficulties related to API
lifecycle management, such as designing, testing,
deploying, and monitoring APIs in dynamic and often
distributed environments[32].

• Organizational Challenges: The need for aligning
business strategies with technical implementations,
ensuring cross-team coordination, and managing
changes in an increasingly API-driven digital
ecosystem.

VI. Literature Review

This section reviews API management systems, their role
in software integration, best practices, challenges, and
advancements. Table 2 summarizes key studies.

Dos Santos and Casas (2024) The primary objective of this
work was to examine the definitions, measurement methods,
and evaluation criteria used to assess API Management
software quality, with a particular emphasis on
methodological perspectives, API Management capabilities
and quality attributes, analyzed and categorized this work
from a methodological standpoint in several dimensions, such
as research types, outcome types and validation methods. Key
quality characteristics included performance efficiency,
reliability, functional suitability, and security, encompassing
various API management capabilities according to current
industry trends[31].

Li et al. (2024) provide a method to identify API abuses
by integrating all available API use limitations from various
sources, such as client code, API documentation, and library
code. Their process starts with translating client code into API
using Graphs (AUGs). Then, they look for trends in API use
and utilize heuristic filtering criteria to determine API usage
constraints. Developers must adhere to certain rules and
restrictions while utilizing APIs; otherwise, APIs might be
misused[33].

Duan (2023) offers a framework for data-driven smart
buildings that is service-oriented. An important obstacle to
building scalable, modular, and reusable apps is the absence
of an API-rich system architecture. It is quite similar to the
headless, cloud-based, API-first, and microservices
characteristics of the MACH architecture. As a proof-of-
concept, this architecture is put into practice with three smart
building applications[34].

Li et al. (2024) provide a method to identify API abuses
by integrating all available API use limitations from various
sources, such as client code, API documentation, and library
code. The next step is to create a number of API preliminary
constraint graphs by combining the API use restrictions that
were collected from various sources. They develop various
solutions for API constraints based on these first API
constraint graphs[33].

Jonnada and Joy 2019 provide a structure for validating
functionality and conformance. They can improve the design
of their interfaces by being able to measure the complexity of
APIs; simpler APIs are easier to adopt and integrate. APIs are
the latest standard for software program communication. The

operation of next-generation technology relies heavily on
these interfaces. Their importance in technology and business
has been growing substantially due to the extensive use of
these interfaces[35].

Kumar et al. (2023) these resources are the foundation
upon which the APIs rest. The REST architecture is stateless
since no data is stored by either the client or the server. The
resources returned by RESTful services are represented in
some way. In an attempt to modernize and simplify their
systems, some SOAP-oriented websites transitioned to REST
implementation. The APIs were discovered to be using basic
HTTP verbs devoid of headers. HTTP is the protocol of choice
for developing REST web APIs[36].

Table 2: Summary of reviewed studies on API Management Systems and Integration.

References Study On Approach Key Findings Challenges Limitations

Dos Santos
and Casas,

(2024)

API
Management

software quality

Examined definitions,
measurement methods,

and evaluation criteria

Identified key API Management
capabilities and quality characteristics

such as performance efficiency,

reliability, functional suitability, and
security

Complexity in
assessing API quality

across different

industry standards

Limited scope on
real-world API

deployments

Li et al.,

(2024)

API misuse

detection

Integrated API usage

constraints from client

code, API documentation,
and library code

Developed API Usage Graphs (AUGs)

and heuristic filtering rules to identify

API constraints

Handling diverse API

constraints from

multiple sources

Requires extensive

validation across

various API
environments

Duan,

(2023)

Service-oriented

system
architecture for

smart buildings

Implemented a MACH-

based API architecture

Demonstrated modularity, scalability, and

reusability in smart building applications

Ensuring seamless

API integration
across heterogeneous

environments

Proof-of-concept

may not cover all
real-world

scalability concerns

Li et al.
(2024)

API misuse
detection

(Extended

Analysis)

Converted client code
into API Usage Graphs

(AUGs) and extracted

API usage patterns

Created alternate constraint graphs for
APIs using methodologies for designing

constraints

Combining API usage
constraints from

multiple sources

accurately

Heuristic filtering
rules may not cover

all API misuse cases

Jonnada
and Joy,

2019

API conformity
and

functionality

validation

Proposed a framework for
measuring API

complexity and usability

Emphasized the importance of
quantifying API complexity for better

design

Lack of universal
standards for API

validation

Framework
effectiveness may

vary based on API

design patterns

Kumar et

al. (2023)

RESTful APIs

and their

evolution

Analyzed RESTful

services and their

transition from SOAP

Found that REST APIs simplify

operations by using HTTP verbs without

headers

Ensuring security and

consistency in

RESTful API
implementation

Does not cover

advanced RESTful

API security
concerns.

VII. Conclusion and Future Work

API taxonomy and management are essential for seamless
software integration, ensuring security, access control, and
efficient data exchange. The comparison of API architectures,
including SOAP, RPC, and REST, highlights their strengths
and application-specific suitability. Effective API
management, incorporating gateways, monitoring, and
authentication, enhances security and performance. As digital
ecosystems evolve, robust API strategies remain critical for
interoperability and operational efficiency. Additionally,
adopting best practices in API lifecycle management helps
organizations enhance scalability, maintainability, and
innovation. A well-structured API ecosystem fosters
collaboration and accelerates digital transformation across
industries. Future work can explore advanced security
measures against evolving threats and the integration of
AI/ML for real-time monitoring and optimization.
Standardized frameworks for API governance and compliance
need further development. Additionally, the impact of API
management on microservices and serverless computing
scalability warrants deeper investigation.

REFERENCES

[1] L. C. -, “Review of Application Software Used in Educational

Research,” Int. J. Multidiscip. Res., vol. 5, no. 3, pp. 1–8, 2023,
doi: 10.36948/ijfmr.2023.v05i03.2816.

[2] O. O. Efuntade and A. O. Efuntade, “Application Programming

Interface (API) And Management of Web-Based Accounting

Information System (AIS): Security of Transaction Processing
System, General Ledger and Financial Reporting System,” J.

Account. Financ. Manag., 2023, doi:
10.56201/jafm.v9.no6.2023.pg1.18.

[3] J. Ofoeda, R. Boateng, and J. Effah, “API integration and

organizational agility outcomes in digital music platforms: A
qualitative case study,” Heliyon, vol. 10, no. 11, p. e31756, 2024,
doi: 10.1016/j.heliyon.2024.e31756.

[4] M. Mudassir and M. Mushtaq, “The role of APIs in modern
software development,” World J. Adv. Eng. Technol. Sci., vol. 13,
no. 01, pp. 1045–1047, 2024.

[5] S. R. Thota, S. Arora, and S. Gupta, “Al-Driven Automated

Software Documentation Generation for Enhanced Development

Productivity,” in 2024 International Conference on Data Science
and Network Security (ICDSNS), 2024, pp. 1–7. doi:
10.1109/ICDSNS62112.2024.10691221.

[6] S. M. Sohan, C. Anslow, and F. Maurer, “A Case Study of Web
API Evolution,” in Proceedings - 2015 IEEE World Congress on

Services, SERVICES 2015, 2015. doi:
10.1109/SERVICES.2015.43.

[7] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating

Web APIs on the World Wide Web,” in Proceedings - 8th IEEE
European Conference on Web Services, ECOWS 2010, 2010. doi:
10.1109/ECOWS.2010.9.

[8] C. Severance, “Roy T. Fielding: Understanding the REST Style,”
Computer. 2015. doi: 10.1109/MC.2015.170.

[9] V. S. Thokala, “Integrating Machine Learning into Web

Applications for Personalized Content Delivery using Python,”
Int. J. Curr. Eng. Technol., vol. 11, no. 06, 2021, doi:
https://doi.org/10.14741/ijcet/v.11.6.9.

[10] M. Lamothe, Y. G. Guéhéneuc, and W. Shang, “A Systematic

Review of API Evolution Literature,” ACM Comput. Surv., vol.
54, no. 8, 2022, doi: 10.1145/3470133.

[11] H. Luzern, Communications in Computer and Information
Science, no. March. 2017. doi: 10.1007/978-981-16-9229-1.

[12] Vasudhar Sai Thokala, “Efficient Data Modeling and Storage

Solutions with SQL and NoSQL Databases in Web Applications,”

Int. J. Adv. Res. Sci. Commun. Technol., vol. 2, no. 1, pp. 470–482,
Apr. 2022, doi: 10.48175/IJARSCT-3861B.

[13] M. R. S. Vishwakarma, Pawan Kumar, “A Study on Energy

Management Systems (EMS) in Smart Grids Industry,” IJRAR,
vol. 10, no. 2, pp. 558–563, 2023.

[14] M. Mathijssen, M. Overeem, and S. Jansen, “Identification of
Practices and Capabilities in API Management: A Systematic

Literature Review,” no. June, 2020, doi:
10.48550/arXiv.2006.10481.

[15] A. V. V Sudhakar, A. Tyagi, P. S. Patil, K. S. Kumar, M. Sathe,

and B. T. Geetha, “Cognitive Computing in Intelligent Traffic

Management Systems,” in 2024 International Conference on
Advances in Computing, Communication and Applied Informatics

(ACCAI), 2024, pp. 1–6. doi:
10.1109/ACCAI61061.2024.10602427.

[16] S. Moiz Ali and T. Rahim Soomro, “Comparative Study of API

Management Solutions,” 6th Int. Conf. Innov. Sci. Technol., pp.
41–54, 2019, doi: 10.33422/6th-istconf.2019.07.411.

[17] M. Mathijssen, M. Overeem, and S. Jansen, “Identification of
Practices and Capabilities in API Management: A Systematic
Literature Review,” 2020.

[18] A. and P. Khare, “Cloud Security Challenges : Implementing Best
Practices for Secure SaaS Application Development,” Int. J. Curr.

Eng. Technol., vol. 11, no. 6, pp. 669–676, 2021, doi:
https://doi.org/10.14741/ijcet/v.11.6.11.

[19] A. Goyal, “Optimising Cloud-Based CI/CD Pipelines: Techniques

for Rapid Software Deployment,” Tech. Int. J. Eng. Res., vol. 11,
no. 11, pp. 896–904, 2024.

[20] N. Abid, “Improving Accuracy and Efficiency of Online Payment

Fraud Detection and Prevention with Machine Learning Models,”
Int. J. Innov. Sci. Res. Technol., vol. 9, no. 12, pp. 711–723, 2024.

[21] V. S. Thokala, “A Comparative Study of Data Integrity and
Redundancy in Distributed Databases for Web Applications,”
IJRAR, vol. 8, no. 4, pp. 383–389, 2021.

[22] M. Mathijssen, M. Overeem, and S. Jansen, “Source Data for the
Focus Area Maturity Model for API Management,” no. August,
2020, doi: 10.48550/arXiv.2007.10611.

[23] J. Vijaya Chandra, N. Challa, and S. K. Pasupuletti,

“Authentication and authorization mechanism for cloud security,”

Int. J. Eng. Adv. Technol., 2019, doi:
10.35940/ijeat.F8473.088619.

[24] A. Coates, M. Hammoudeh, and K. G. Holmes, “Internet of things
for buildings monitoring: Experiences and challenges,” ACM Int.

Conf. Proceeding Ser., vol. Part F130522, 2017, doi:
10.1145/3102304.3102342.

[25] R. L. Pinheiro, D. Landa-Silva, R. Qu, E. Yanaga, and A. A.

Constantino, “Towards an efficient API for optimisation problems
data,” ICEIS 2016 - Proc. 18th Int. Conf. Enterp. Inf. Syst., vol. 2,
no. December, pp. 89–98, 2016, doi: 10.5220/0005915800890098.

[26] N. Xie, “Strategic approaches to API design and management,”
Appl. Comput. Eng., vol. 64, no. 1, pp. 230–236, 2024, doi:
10.54254/2755-2721/64/20241395.

[27] A. Goyal, “Optimising Software Lifecycle Management through

Predictive Maintenance : Insights and Best Practices,” Int. J. Sci.
Res. Arch., vol. 07, no. 02, pp. 693–702, 2022.

[28] M. Gopalsamy, “An Optimal Artificial Intelligence (AI)

technique for cybersecurity threat detection in IoT Networks,” Int.
J. Sci. Res. Arch., vol. 07, no. 02, pp. 661–671, 2022.

[29] F. Hussain, R. Hussain, B. Noye, and S. Sharieh, “Enterprise API

Security and GDPR Compliance: Design and Implementation
Perspective,” IT Professional. 2020. doi:
10.1109/MITP.2020.2973852.

[30] S. Murri, “Data Security Environments Challenges and Solutions
in Big Data,” Int. J. Curr. Eng. Technol., vol. 12, no. 6, pp. 565–
574, 2022.

[31] E. dos Santos and S. Casas, “Unveiling Quality in API

Management: A Systematic Mapping Study,” in 2024 L Latin

American Computer Conference (CLEI), 2024, pp. 1–10. doi:
10.1109/CLEI64178.2024.10700447.

[32] S. Andreo and J. Bosch, “API management challenges in
ecosystems,” Lect. Notes Bus. Inf. Process., vol. 370 LNBIP, no.

October 2019, pp. 86–93, 2019, doi: 10.1007/978-3-030-33742-
1_8.

[33] C. Li, J. Zhang, Y. Tang, Z. Li, and T. Sun, “Boosting API Misuse

Detection via Integrating API Constraints from Multiple Sources,”

in 2024 IEEE/ACM 21st International Conference on Mining
Software Repositories (MSR), 2024, pp. 14–26.

[34] Z. Duan, “Application development exploration and practice based
on LangChain+ChatGLM+Rasa,” in 2023 2nd International

Conference on Cloud Computing, Big Data Application and

Software Engineering, CBASE 2023, 2023. doi:

10.1109/CBASE60015.2023.10439133.

[35] S. Jonnada and J. K. Joy, “Measure your API complexity and

reliability,” in Proceedings - 2019 IEEE/ACIS 17th International
Conference on Software Engineering Research, Management and

Application, SERA 2019, 2019. doi:
10.1109/SERA.2019.8886790.

[36] K. Kumar, A. K. Jain, R. G. Tiwari, N. Jain, V. Gautam, and N. K.

Trivedi, “Analysis of API Architecture: A Detailed Report,” in
Proceedings - 2023 12th IEEE International Conference on

Communication Systems and Network Technologies, CSNT 2023,
2023. doi: 10.1109/CSNT57126.2023.10134658.

