
ISSN 2581 – 3781

 Available Online at www.ajcse.info

 Asian Journal of Computer Science Engineering 2022; 7(4)

 REVIEW ARTICLE

A Deep Dive into Effective Database Migration Approaches for Transitioning

Legacy Systems in Advanced Applications

Dhruv Patel*1

Independent Researcher

dp270894@gmail.com

Ritesh Tandon2

Independent Researcher

ritz10don@gmail.com

Abstract—The problem with legacy systems in the age of

digital transformation is that they are most of their enterprises

and public sector services passing pipes, and the technology

that serves as their back bone is most of the time too old and

outdated to grow, as all of us know that most of their

enterprises are growing, not only they, but so are the public

sector services. This paper presents the urgent demand for

updating these systems, advocating for moving relational

databases to modern platforms. The characteristics of legacy

systems are addressed, what motivates such transformation,

several reengineering strategies such as rehosting, replacing,

mitigation, and retargeting. The data migration strategy along

with best practices for a successful execution is provided along

with a complete overview of database migration processes

(including schema translation and data transformation). The

paper also brings up that advanced technologies like the

Advanced Message Queuing Protocol (AMQP) and DevOps

practices play a positive part in smoothing the migration

process. It analyzes the various migration approaches, i.e.

rehosting, refactoring, rebuilding, replacing and their cost,

risk, alignment to organizational goals, and so forth. Through

this study it strives to provide the companies with the strategic

framework for their realization of legacy infrastructure

replacement, which should be of scalable, secured and ready

for future technology advancements systems.

Keywords—Legacy Systems, Database Migration,

Modernization Strategies, Reengineering, Cloud Adoption,

Server Migration.

Introduction
Legacy systems are important, but fundamental systems,

and these aren’t easy to keep up with the needs of current
applications. With the rise of cloud-based and moving to
completely distributed and AI-powered platform, there is no
room for less efficient database migration strategy [1][2].
Legacy databases, typically rigid, monolithic, and resource-
intensive, pose significant challenges in terms of
performance, integration, and maintainability [3]. Migrating
these systems to modern environments enables organizations
to harness enhanced scalability, improved security, real-time
analytics, and operational efficiency.

Moving data from the source relational database (RDB)
to the target RDB, including data transformation and schema
translation, is known as relational database (RDB) migration.
Legacy migration has been the foundation of several

solutions since 1990. Many software companies developed
their own migration process solutions for their key products
as information technology developed [4]. The main reason
for the migration is to turn the current system into a
developed system that meets the needs of the business. The
next problem is redefining the current storage and database
system in terms of hard-to-understand code [5][6]. There is a
rule in the business that during the migration, the source and
target databases will often have different structures or data
will not match up across multiple data sources. Because of
this issue, many studies and the creation of migration tools
have continuously come up with a full answer for the data
migration methodology for migration projects. The whole
process of moving a database is broken up into several steps
that are done one at a time. With this method, the database
migration takes into account the number of rows, columns,
and other information from the source database.

Legacy tools are also used to help the government
provide services to the people. The methods that have
changed over time are still used because they are good for
business in the public sector [7]. It keeps years of data that is
needed for daily operations and important tasks for public
administration. But because technology changes so quickly,
it's harder for the government to use these tools. People in
the public sector now want to access information across
organizations and countries, but old methods can't keep up.
People have pointed out that these systems make it harder for
the government to come up with new ideas that are needed to
keep up with changes in technology around the world [8]. As
a result, these systems need to be improved so they can keep
helping the public sector provide services.

The old programs were created using technologies like
mainframes, SAP, and others, and they still do important
work for a business [9]. There have been big changes in
technology lately, so old systems need to be replaced with
new ones so that business applications can be made [10]. On
the other hand, there is operational risk that could hurt the
whole system if it is not handled well.

Structure of the Paper
The structure of this paper is as follows: Section II,

understanding legacy systems and modernizing. Section III
discusses the need for database migration, highlighting the
benefits of transitioning from legacy databases to modern
systems. Section IV presents the different strategies and tools
available for migrating legacy systems. Section V reviews

http://www.ajcse.info/

literature and case studies. Section VI: Conclusions with
findings and future research directions.

Understanding Legacy
Systems And Modernizing
Legacy systems are outdated technologies that still

perform critical business functions but are built on obsolete
platforms. They often come with issues like high
maintenance costs, limited scalability, and security risks.
Despite this, organizations continue to use them because they
hold valuable data and support key operations. Modernizing
these systems means upgrading, transforming, or replacing
them to align with current business needs. This improves
performance, enhances security, and allows integration with
modern tools. The push for modernization is driven by
digital transformation, cloud adoption, customer
expectations, and regulatory compliance. Choosing the right
approach, whether rehosting, refactoring, rebuilding, or
replacing, depends on the company’s goals and resources.
Effective modernization helps businesses become more
agile, efficient, and future-ready while reducing operational
risks [11].

Definition and Characteristics of
Legacy Systems

A legacy system is an old or out-of-date piece of
technology, software, or hardware that an organization still
uses because it still does what it was made to do [12].
Systems that are too old are usually not supported or
managed anymore, and they can't be improved much.

• A legacy system is outdated technology or software
still in use because it fulfills its intended function.

• These systems are often difficult to replace due to
their critical role in operations, lack of
documentation, and intertwined dependencies.

• Over time, multiple changes by different personnel
make system comprehension harder.

• IT managers must evaluate which legacy systems are
essential and how much maintenance or replacement
they require to reduce operational risks.

Reengineering Strategies for
Upgrading Legacy Systems

Using different reengineering processes to replace and
update old systems with new software-based solutions [13].

Re-Hosting
This is called "re-hosting," and it means using old

software on a new server without making any changes. This
will lower the cost of keeping old gear running.

Re-Placing
Once an existing system can't meet all of an

organization's needs, replacement methods are used.
Rewriting old software or adding new features to it is how
replacement is done in software legacy systems. This
program has been used before and works well.

Mitigation
New versions of software will have new features added

to them to fix bugs in older versions. This method is called
reduction. This is a way to move old systems to
environments that are more flexible [14].

Re-Targeting
The legacy system is being changed into a new system

with some extra features and functions. Making a new
hardware platform out of a system platform.

Transition from Legacy System to
New System

Modernizing legacy systems is a strategic necessity for
businesses striving to remain competitive, scalable, and
secure in a technology-driven world. The process involves
migrating to a new system that overcomes the shortcomings
of legacy infrastructure while ensuring minimal disruption to
existing business processes.

Fig. 1. Migration from Legacy System to New System

Modernizing a legacy system means making old software
and programs work with today's technology and business
needs, as shown in Figure 1. This doesn't always mean that
the running systems or apps will change. Most of the time,
old hardware is what gets in the way, which makes it easy for
business-critical apps to fail.

• Modernization improves these systems by moving old
ones to new platforms. Its benefits include
streamlining IT processes, lowering maintenance
costs, and improving performance [15].

• These changes also improve the systems' ability to
work with new technologies. Modernizing businesses
prepares them to use new technologies like AI, big
data, and cloud computing.

Need for Modernization
This is one of the most common ways to update an app,

and it's also the simplest way to make sure that the product
will keep working for years to come. It requires moving the
system (usually by re-hosting it using cloud solutions) and
making a few small improvements. This includes making
changes to the UI and UX, improving speed, and moving the
database. However, this method has some problems. The
main business logic and design don't change much because
these kinds of changes need a more invasive method. If the
product's technology stack is pretty new and doesn't pose a
threat to its future growth, modernization may only require a
few small fixes or improvements. This could mean
optimizing the design or refactoring the code [16]. No major

changes were made to the product's business logic or UX
when it was updated or its speed was improved. New
features can be added to an existing product as soon as it is
suitable. These could be modules built just for it or
connections from a third party.

Database Migration: An
Overview

Moving a current database application to a different
database management system (DBMS) or service provider is
called database migration. Existing data are exported from
the current DBMS and added to the new DBMS during this
process. Although the migrated database will probably have
the same data, the way it works with it will probably be
different [17], This is especially true when moving from very
old systems or systems built on different technologies, or
when the new database wasn't designed with the users in
mind [18].

Data Migration Strategy
A clear plan for moving data from one system to another

should include dealing with legacy data, finding source data,
working with targets that are always changing, making sure
data quality standards are met, coming up with the right
project methods, and learning general migration skills [19].

The primary factors and inputs for creating a data
migration strategy are as follows:

• Plan for making sure that the migrated data is correct
and full after migration.

• Iteratively moving a logical group of data is possible
with agile concepts.

• Plans to deal with the problems that come with the
quality of the source data right now as well as the
quality standards that the target systems expect [20].

• Plan and set up a migration system with the right
checkpoints, controls, and audits so that errors and
broken accounts can be found, reported, fixed, and
closed.

• A way to make sure that the right things are matched
up at different stages to make sure that the migration
is finished.

• A way to pick the best tools and platforms for the
tricky nature of migration [21].

Best Practices for Successful
Migration

A good move from older databases to Microsoft SQL
Server using SQL Server Migration Assistant (SSMA) is
more complicated than just following the steps of the move.
There must be best practices that are followed to ensure
efficiency, lower risks, and increased profits. Consider these
important best practices as it moves [22].

• Comprehensive Pre-Migration Assessment: Prior
to starting the transfer, it should carefully examine
the current database setup. This includes things like
knowing what the current database layout is, what

other parts depend on it, and how to avoid potential
problems.

• Start with a Pilot Project: Before committing to a
full-scale project, this might want to start with a trial
migration to lower the risks. Choose a database that
isn't very important or a smaller amount of data to
move first [23].

• Optimize the Target Environment: Before it
moves the data, ensure that the target SQL Server
environment is optimized for speed and scalability.

• Focus on Data Integrity: Data integrity is very
important during any transfer. Use the data
validation tools in SSMA to make sure that all the
data is moved correctly and that there are no
problems between the old system and SQL Server.

Advanced Message Queueing
Protocol (AMQP)

The publish-subscribe paradigm, as described by OASIS,
is what AMQP is based on. It is an open standard protocol
that lets a lot of different applications and systems work
together, even if they are not built the same way. It was first
created for business messaging with the goal of providing a
non-proprietary solution that could handle a lot of message
exchanges that could happen quickly in a system [24].

• This AMQP interoperability function is important
because it lets platforms that are written in different
languages send and receive messages. This can be
especially helpful in heterogeneous systems. The
two versions of AMQP, AMQP 0.9.1 and AMQP 1.0
are very different from each other and use very
different ways to send messages [25].

• The publish-subscribe paradigm is used by AMQP
0.9.1. It is based on the exchanges and the message
queues, which are two important parts of an AMQP
broker. The exchanges are a part of the broker that
guides the messages that come in from writers [26].

Migration Approaches,
Characteristics And

Strategies
Methods to move old systems to newer platforms, like

the cloud or newer architectures. The three approaches of
rehosting, refactoring, rebuilding, or replacing have their
own trade-off definition in terms of complexity, costs, risk,
and time [27]. The rehosting is quick and the risk is minimal,
whereas rebuilding or replacing brings more long-term
benefits but demands more investment. That comes down to
factors like system performance, scalability, and budget, as
well as business needs, as to what strategy to choose. A good
migration strategy causes little perturbation, is flexible, and
plays to companies’ digital transformation requirements by
being synchronized to modern business objectives [28].
There are different migration techniques that use different

Characteristics of Migration
Approaches

There are a large number of critical characteristics that
govern the selection of a suitable approach to migrating
legacy systems and they vary based on the approach. The
characteristics of these qualities assist in the organization’s
ability to manage cost, risk, performance, and business
continuity against during the transformation process.

• Complexity: Depending on the chosen approach,
migration is a complex process. Rehosting requires
fewer changes as it is just changing the host, whereas
rebuilding requires more changes as it involves
redesign and development [2].

• Cost: The method will vary the cost However,
rebuilds or replacements are very expensive because
of the requirement of new development and testing
and rehosting is cheaper.

• Risk Level: The Chances of risk are different for
rehosting carries low risk since it preserves the
system as it is, but rewriting exposes to risk on
codes, which may involve mistakes [29].

• Time to Implement: Rehosting and encapsulation
of the request are faster, execution wise. Because of
redevelopment needs, rebuilding or replacing a
system takes more time.

• Scalability: Modernized systems are more scalable.
System approaches involving code or architecture
upgrades improve the system’s ability to handle
increasing demand [30].

• Performance Improvement: Some methods do not
boost performance immediately. Rehosting will have
no impact on performance, but refactoring and
refactoring tends to improve performance.

• Business Continuity: Approaches like rehosting and
encapsulation ensure minimal disruption. Full
replacement may temporarily affect ongoing
business operations.

• Integration Capability: Modern systems integrate
easily with APIs and cloud tools. Legacy systems
often need additional tools or custom connectors to
work with new technologies [31].

• Security Enhancements: Migration allows
implementation of modern security standards. Older
systems are more prone to vulnerabilities and lack
updated protections.

Legacy System Modernization
Approaches and Strategy

Modernizing old systems helps businesses stay
competitive, efficient, and ready for the future. Let's look at
the best ways to update old systems that people who make
decisions should think about.

Rehosting or Lift and Shift
Rehosting, also known as "Lift and Shift," is the process

of moving parts of a program to a different infrastructure
(like the cloud or on-premises) without changing the code or
features. A new system is only put in place for the hardware
platform below [32]. Applications from the past will still
work the same way they do now. People often use this

method to quickly move old apps to the cloud and take
advantage of its benefits without having to change the code.

Refactoring or Re-Architecting
Moving and improving the current code without

changing how it works is a traditional way to update an old
system. It's easier to adapt to new situations when
refactoring a system.. These steps should be used by
companies moving from containers to microservices. Things
change in big and small ways. However, they all make the
system stronger [33].

Rebuilding or Rewriting from Scratch

The process of rewriting means making a new application
from scratch while keeping the old system's needs and
functions. Because of this, current frameworks, codes, and
tools can be used [34].

Encapsulation
Encapsulation lets it reuse key system parts while getting

rid of old code. These parts are linked to new access levels
through APIs [35]. This way of updating old software gives
current parts a new look and feel by using the app's features.
Some parts may need more work than others, so it's
important to plan ahead. Encapsulation works well if all
these want to do is change the interface.

Application Program Interface (API)
API modernization makes it possible for old systems to

connect to and use new services and apps. It adds to the
features of an old system without making big changes to the
code. The process isn't always easy. There are easy and
complex interfaces [36].

Cloud Migration

Apps and data are moved to cloud technology when old
systems are moved to the cloud. This cuts costs and makes it
easier to grow and change. It often makes the machine run
faster. Depending on what the system needs, the change can
happen slowly or quickly [37].

Service-Oriented Architecture (SOA)
Service-Oriented Architecture (SOA) breaks down old

systems into smaller services that can be used again and
again. These can be built, put into use, and kept up to date
individually. SOA makes systems more adaptable and
scalable. It makes it easier to connect to other services. How
hard it is to implement depends on the size and layout of the
system.

Buying a New Application
Lastly, getting a new application is another good way for

businesses to update an old system. They can replace the old
system with the new application. In this method, it picks a
solution and replaces it with the current program.

Literature Review
This section discusses the previous research on Database

Migration Approaches for Transitioning Legacy Systems.

Table I provides a summary of key studies on database
migration approaches for legacy systems, highlighting
methodologies, findings, and associated challenges. It offers
insights into various frameworks, strategies, and practical
applications across domains.

Althani and Khaddaj (2017) suggested that quality be
built into the transfer process, which would have a big effect
on risk and cost. This paper does a systematic review of
different ways to update old systems, ranging from easy
wrapping to full migration. When choosing a moderation
approach to meet the needs of the migration, the quality
aspects of the process need to be taken into account. To cut
costs and make them more flexible, they need to be updated
and moved to new technological settings [38].

Wijaya and Akhmadarman (2018) to help with the data
migration process, the suggested framework includes
algorithm migration, model migration, and migration
schemes. The proposed framework can move data in the real
operating world after it has been tested and evaluated. In
order to fix this problem, they need a general migration
system that covers all the steps of moving data. To help with
moving data, many systems have been made. By providing a
general data migration framework, the study results will help
companies or developers who need help moving data [39].

M’Baya, Laval and Moalla (2017) based on quality
measures, a Legacy System Assessment Conceptual
Framework (LSACF). To assist maintainers in the evolution
process, LSACF provides a plan that includes a
methodological approach and a functional tool. Another
common problem for large businesses is updating old
systems. Businesses need to update old systems and perform
proper modernization because technology is changing so
quickly. To adequately choose a modernization strategy and
create an effective evolutionary system, it is necessary to
look at the whole modernization project [40].

Khan et al. (2020) offer a way for old industrial control
systems to be moved to the cloud in a way that is both
smooth and safe. It checks to see if the cloud can handle the
real-time needs of control operations without putting system
safety at risk. The suggested method is meant to keep

industrial processes running as smoothly as possible during
the cloud migration process, and it provides a general
framework that can be used in various industrial sectors.
Experiments with the cloud migration method look good for
systems that need to work quickly, like synchrophasor
technology [41].

Preti et al. (2021) describe the transition plan that the
Public Safety Secretariat of Mato Grosso (SESP-MT) is
using to change its old, single-piece systems to a
microservices-based design. Even though there are already
standards for microservice projects, it is hard to find reports
on how to successfully move from a monolithic architecture
to a microservice design over time. This is especially true
when it comes to splitting and separating legacy databases.
Their findings when they used the database sharing
techniques and migration process outlined in this paper
during a time when monoliths and microservices lived
together [42].

Schnappinger and Streit (2021) to make things clearer,
explain why the current transfer plans didn't work and
suggest a different approach, keeping in mind the limited
moving funds. The old code is instantly translated to a
different programming language by custom translation. The
economy depends on old software systems, but they are
known to be expensive to run and keep up to date. Modern
technology or languages are often used to move these kinds
of systems in order to cut down on costs. Many transfer plans
exist, but it's still hard to pick the best one or set of plans
when there are technical, economic, and business issues to
consider [43].

Martens, Book and Gruhn (2018) show a way to
decompose data in which the whole volume of data in a
single business IT application is split into separate data
migration chunks. The method for moving data explained
here is being used in one of the biggest healthcare data
migration projects in Europe right now. It involves millions
of customer records. New enterprise IT applications must
finally take the place of old ones, both because they are more
cost-effective and better at what they do. Moving data is an
unavoidable part of making this move [44].

TABLE I. LITERATURE REVIEW ON DATABASE MIGRATION APPROACHES FOR TRANSITIONING LEGACY SYSTEMS IN ADVANCED APPLICATIONS

Ref Study On Approach Key Findings Challenges & Limitations Future Work

Althani and

Khaddaj
(2017)[38]

Quality integration

in legacy system
migration

Systematic review of

modernization
strategies (wrapping

to full migration)

Emphasizes

considering quality
aspects in selecting a

migration strategy to

reduce cost and risk

Quality factors are often

overlooked; they require a
tailored strategy for each

case

Develop adaptive

frameworks that
incorporate quality metrics

dynamically into migration

decision-making.

Wijaya and

Akhmadarman

(2018)[39]

Development of a

general data

migration

framework

Framework with

algorithm migration,

model migration, and

migration schemes

Provides complete

stages of data

migration; validated in

operational

environment

Existing frameworks lack

completeness; general

frameworks still need real-

world robustness

Extend framework testing

across varied industry

scenarios to enhance

robustness and

completeness.

M’Baya, Laval

and Moalla
(2017)[40]

Assessment of

legacy systems
using quality

metrics

Legacy System

Assessment
Conceptual

Framework (LSACF)

with tools

Helps maintainers

choose modernization
strategies using

quality indicators

Full project lifecycle must

be addressed; integration
of the toolkit into the

process can be complex

Streamline toolkit

integration into standard
software engineering

workflows and lifecycle

models.

Khan et al.

(2020)[41]

Secure cloud

migration of

industrial control
systems

Minimal interruption,

cloud-based

migration framework

Suitable for real-time

systems; ensures

safety and continuity

Needs further validation in

diverse industrial

environments

Conduct real-world testing

across various critical

infrastructure domains for
broader applicability.

Preti et al.

(2021)[42]

Gradual migration

of public safety

legacy systems to
microservices

Database sharing

strategies during

monolith-to-
microservice

transition

Demonstrates co-

existence and gradual

migration benefits

Complexity in managing

shared databases during

transition

Investigate advanced data

synchronization and

management techniques
during transitional phases.

Schnappinger
and Streit

(2021)[43]

Cost-effective
modernization with

a limited budget

Custom
transportation and

alternative strategy

under constraints

Enables legacy
language migration

without full re-

engineering

Strategy selection is still a
challenge due to budget,

technical, and business

constraints

Explore intelligent decision
support systems for

strategy recommendation

under multi-constraint
environments.

Martens, Book

and Gruhn

(2018)[44]

Scalable data

decomposition for

large-scale
healthcare

migration

Splitting monolithic

data into independent

tranches

Efficient for large-

scale systems; applied

in the healthcare
sector migration

Technical and cost

constraints in decomposing

and migrating huge
datasets

Research automation tools

and heuristics for scalable

and cost-effective data
tranche decomposition.

Conclusion And Future
Work

Modernizing legacy systems and executing robust
database migration strategies have become critical
imperatives in today's digital-first enterprise landscape. As
demonstrated, legacy systems, despite their foundational
roles, are often barriers to innovation due to their rigid
architectures, outdated technologies, and high maintenance
costs. Migration of relational databases is a complex and
multi-phased process. However, it ensures that organizations
fall in line with modern IT infrastructure, including the cloud
native and smart one. Rehosting, replacing, mitigation, and
re-targeting are practical ways of system modernization
under reengineering approaches. Thorough pre-migration
assessment, pilot testing, and ensuring data integrity tools
such as SSMA all lower the risk and increase the success rate
of migrations. As an extension to it, the integration of
interoperable messaging protocols like AMQP makes the
communication seamless after migration across diverse
systems; thus, the extent of modernization is expanding. To
conclude, legacy modernization as well as database
migration not only aid in operational efficiency and
scalability but also play an instrumental role in establishing a
strong base for the digital transformation. An approach to
move from obsolete systems to future-ready platforms with
minimal disruption can be done by looking back with
structured methodologies and best practices.

The understanding and analysis of legacy systems could
be automated so that migration projects would consume less
time and money in future research on database migration.
Finally, still further automating the migration process is the
development of intelligent tools that are based on AI and ML
for schema translation, data transformation and anomaly
detection. Moreover, database environments in modern times
are becoming increasingly complex and comprise several
other factors which should be taken into account during a
database migration. For example, data security during a
migration needs to be robust, and interoperability between
heterogeneous systems also has to be enhanced, with
database migration being cloud-based. Organizations will
benefit from further advancements that make the process of
migration more efficient and resilient, perfectly adapting to
the needs of those organizations.

References

[1] D. Goerzig and T. Bauernhansl, “Enterprise architectures for the
digital transformation in small and medium-sized enterprises,”
Procedia Cirp, vol. 67, pp. 540–545, 2018.

[2] Abhishek and P. Khare, “Cloud Security Challenges: Implementing

Best Practices for Secure SaaS Application Development,” Int. J.

Curr. Eng. Technol., vol. 11, no. 06, pp. 669–676, Nov. 2021, doi:
10.14741/ijcet/v.11.6.11.

[3] T. Flynn et al., “Numerical soil horizon classification from South
Africa’s legacy database,” Catena, 2021, doi:
10.1016/j.catena.2021.105543.

[4] M. Elamparithi and V. Anuratha, “A Review on Database Migration
Strategies, Techniques and Tools,” World J. Comput. Appl. Technol.,
vol. 3, no. 3, pp. 41–48, 2015, doi: 10.13189/wjcat.2015.030301.

[5] Anju and A. V. Hazarika, “Extreme Gradient Boosting using Squared

Logistics Loss function,” Int. J. Sci. Dev. Res., vol. 2, no. 8, pp. 54–
61, 2017.

[6] V. S. Thokala, “A Comparative Study of Data Integrity and

Redundancy in Distributed Databases for Web Applications,” Int. J.
Res. Anal. Rev., vol. 8, no. 04, pp. 383–390, 2021.

[7] H. A. Bakar, R. Razali, and D. I. Jambari, “Legacy systems
modernisation for citizen-centric digital government: A conceptual
model,” Sustain., vol. 13, no. 23, 2021, doi: 10.3390/su132313112.

[8] A. Gogineni, “Observability Driven Incident Management for Cloud-

native Application Reliability,” Int. J. Innov. Res. Eng. Multidiscip.
Phys. Sci., vol. 9, no. 2, 2021.

[9] M. Srinivas, G. Ramakrishna, K. R. Rao, and E. Suresh Babu,

“Analysis of legacy system in software application development: A
comparative survey,” Int. J. Electr. Comput. Eng., vol. 6, no. 1, pp.
292–297, 2016, doi: 10.11591/ijece.v6i1.8367.

[10] G. Yang, M. A. Jan, A. U. Rehman, M. Babar, M. M. Aimal, and S.

Verma, “Interoperability and Data Storage in Internet of Multimedia

Things: Investigating Current Trends, Research Challenges and
Future Directions,” IEEE Access, vol. 8, 2020.

[11] M. Fahmideh, F. Daneshgar, F. Rabhi, and G. Beydoun, “A generic
cloud migration process model,” Eur. J. Inf. Syst., vol. 28, no. 3, pp.
233–255, 2019.

[12] K. M. R. Seetharaman, “Internet of Things (IoT) Applications in

SAP: A Survey of Trends, Challenges, and Opportunities,” Int. J.

Adv. Res. Sci. Commun. Technol., vol. 3, no. 2, pp. 499–508, Mar.
2021, doi: 10.48175/IJARSCT-6268B.

[13] M. Ali, S. Hussain, M. Ashraf, and M. K. Paracha, “Addressing
software related issues on legacy systems – a review,” Int. J. Sci.
Technol. Res., vol. 9, no. 3, pp. 3738–3742, 2020.

[14] A. Murua, E. Carrasco, A. Agirre, J. M. Susperregi, and J. Gãmez,

“Upgrading legacy EHR systems to smart EHR systems,” in Smart

Innovation, Systems and Technologies, 2018. doi: 10.1007/978-3-
319-59397-5_24.

[15] K. M. R. Seetharaman, “End-to-End SAP Implementation in Global
Supply Chains: Bridging Functional and Technical Aspects of EDI
Integration,” Int. J. Res. Anal. Rev., vol. 8, no. 2, pp. 1–7, 2021.

[16] V. S. Thokala, “Integrating Machine Learning into Web Applications

for Personalized Content Delivery using Python,” Int. J. Curr. Eng.
Technol., vol. 11, no. 06, 2021, doi: 10.14741/ijcet/v.11.6.9.

[17] V. Thakran, “Environmental Sustainability in Piping Systems :
Exploring the Impact of Material Selection and Design Optimisation,”
Int. J. Curr. Eng. Technol., vol. 11, no. 5, pp. 523–528, 2021.

[18] V. Pillai, “A Study of Database Migration: Understanding the User
Experience,” TRACE Tennessee Res. Creat. Exch., 2019.

[19] A. A. Hussein, “Data Migration Need, Strategy, Challenges,

Methodology, Categories, Risks, Uses with Cloud Computing, and

Improvements in Its Using with Cloud Using Suggested Proposed
Model (DMig 1),” J. Inf. Secur., vol. 12, no. 01, pp. 79–103, 2021,
doi: 10.4236/jis.2021.121004.

[20] V. S. Thokala, “A Comparative Study of Data Integrity and

Redundancy in Distributed Databases for Web Applications,” IJRAR,
vol. 8, no. 4, pp. 383–389, 2021.

[21] S. S. S. Neeli, “Key Challenges and Strategies in Managing Databases

for Data Science and Machine Learning,” Int. J. Lead. Res. Publ., vol.
2, no. 3, p. 9, 2021.

[22] P. Tupsakhare, “From Legacy to Modern: Migrating with SQL Server
Migration Assistant,” J. Sci. Eng. Res., vol. 7, no. 1, pp. 304–308,
2020.

[23] H. de Haas, “A Theory of Migration: The Aspirations-Capabilities

Framework,” Comp. Migr. Stud., vol. 9, no. 1, Dec. 2021, doi:
10.1186/s40878-020-00210-4.

[24] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-bruin, “A Survey of

Communication Protocols for Internet of Things and Related

Challenges of Fog and Cloud Computing Integration,” vol. 1, no. 1,
pp. 1–30, 2018.

[25] V. Gupta, S. Khera, and N. Turk, “MQTT protocol employing IOT

based home safety system with ABE encryption,” Multimed. Tools
Appl., 2021, doi: 10.1007/s11042-020-09750-4.

[26] S. S. S. Neeli, “Optimizing Database Management with DevOps:
Strategies and Real-World Examples,” J. Adv. Dev. Res., vol. 11, no.
1, p. 8, 2020.

[27] A. Goyal, “Enhancing Engineering Project Efficiency through Cross-

Functional Collaboration and IoT Integration,” Int. J. Res. Anal. Rev.,
vol. 8, no. 4, pp. 396–402, 2021.

[28] J. Carling and F. Collins, “Aspiration, desire and drivers of

migration,” Journal of Ethnic and Migration Studies. 2018. doi:
10.1080/1369183X.2017.1384134.

[29] S. Pandya, “Predictive Analytics in Smart Grids : Leveraging
Machine Learning for Renewable Energy Sources,” Int. J. Curr. Eng.

Technol., vol. 11, no. 6, pp. 677–683, 2021, doi:
10.14741/ijcet/v.11.6.12.

[30] A. Immadisetty, “Edge Analytics vs. Cloud Analytics: Tradeoffs in

Real-Time Data Processing,” J. Recent Trends Comput. Sci. Eng., vol.
13, no. 1, pp. 42–52, 2016.

[31] G. Salvatierra, C. Mateos, M. Crasso, A. Zunino, and M. Campo,

“Legacy system migration approaches,” IEEE Lat. Am. Trans., 2013,
doi: 10.1109/TLA.2013.6533975.

[32] A. Immadisetty and J. Olusegun, “Real-Time Data Analytics in

Customer Experience Management: A Framework for Digital
Transformation and Business Intelligence,” Int. J. Sci. Res. Comput.
Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 1280–1288, 2021.

[33] V. Kolluri, “A Comprehensive Analysis on Explainable and Ethical

Machine: Demystifying Advances in Artificial Intelligence,” TIJER -
Int. Res. Journals, vol. 2, no. 7, 2015.

[34] H. K. M. Abu Bakar, R. Razali, and D. I. Jambari, “A guidance to

legacy systems modernization,” Int. J. Adv. Sci. Eng. Inf. Technol.,
2020, doi: 10.18517/ijaseit.10.3.10265.

[35] V. S. Thokala, “Utilizing Docker Containers for Reproducible Builds
and Scalable Web Application Deployments,” Int. J. Curr. Eng.

Technol., vol. 11, no. 6, pp. 661–668, 2021, doi:

10.14741/ijcet/v.11.6.10.

[36] A. Wahyudi, E. Junirianto, and A. Franz, “Web and Application

Program Interface (API) Design ‘Parmon’ Modern Parking

Application,” TEPIAN, 2021, doi: 10.51967/tepian.v2i3.181.

[37] S. S. S. Neeli, “Real-Time Data Management with In-Memory
Databases : A Performance- Centric Approach,” J. Adv. Dev. Res.,
vol. 11, no. 2, 2020.

[38] B. Althani and S. Khaddaj, “Systematic Review of Legacy System

Migration,” in 2017 16th International Symposium on Distributed

Computing and Applications to Business, Engineering and Science
(DCABES), 2017, pp. 154–157. doi: 10.1109/DCABES.2017.41.

[39] Y. S. Wijaya and A. Akhmadarman, “A Framework for Data
Migration between Different Datastore of NoSQL Database,” in

Proceeding - 2018 International Conference on ICT for Smart

Society: Innovation Toward Smart Society and Society 5.0, ICISS
2018, 2018. doi: 10.1109/ICTSS.2018.8549944.

[40] A. M’Baya, J. Laval, and N. Moalla, “An assessment conceptual
framework for the modernization of legacy systems,” in International

Conference on Software, Knowledge Information, Industrial

Management and Applications, SKIMA, 2017. doi:
10.1109/SKIMA.2017.8294120.

[41] R. Khan, K. McLaughlin, B. Kang, D. Laverty, and S. Sezer, “A

seamless cloud migration approach to secure distributed legacy

industrial SCADA systems,” in 2020 IEEE Power and Energy Society

Innovative Smart Grid Technologies Conference, ISGT 2020, 2020.
doi: 10.1109/ISGT45199.2020.9087760.

[42] J. P. D. Preti, A. N. A. Souza, E. C. Freiberger, and T. De Almeida

Lacerda, “Monolithic to Microservices Migration Strategy in Public

Safety Secretariat of Mato Grosso,” in 3rd International Conference
on Electrical, Communication and Computer Engineering, ICECCE
2021, 2021. doi: 10.1109/ICECCE52056.2021.9514268.

[43] M. Schnappinger and J. Streit, “Efficient Platform Migration of a

Mainframe Legacy System Using Custom Transpilation,” in

Proceedings - 2021 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2021, 2021. doi:
10.1109/ICSME52107.2021.00055.

[44] A. Martens, M. Book, and V. Gruhn, “A data decomposition method

for stepwise migration of complex legacy data,” in Proceedings -

International Conference on Software Engineering, 2018. doi:
10.1145/3183519.3183520.

