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Abstract—Earthquakes are complex natural disasters that 

may significantly impact people's well-being, their possessions, 

and the natural world. Inaccurate estimates of earthquake time, 

location, and magnitude are common since earthquakes do not 

follow any particular patterns. The capacity of AI-based 

techniques to uncover previously unseen patterns in data has 

made them famous. This research presents an AI-driven method 

for earthquake prediction using the Gated Recurrent Unit 

(GRU) model and historical seismic data from the USGS. After 

the data is prepared, features are chosen, and the model is 

trained, the accuracy, precision, recall, and F1-score are used to 

assess the performance. The GRU model outperforms Logistic 

Regression (LR), Recurrent Neural Networks (RNN), and 

Artificial Neural Networks (ANN) in a comparative comparison. 

It successfully achieves an accuracy of 93.10% while minimizing 

overfitting. The results highlight the effectiveness of GRU in 

capturing temporal dependencies in seismic events. However, 

challenges such as data imbalance, computational complexity, 

and regional generalization remain. Future research should 

focus on integrating additional geological and environmental 

parameters, optimizing computational efficiency, and 

developing real-time predictive frameworks to enhance the 

reliability of AI-driven earthquake forecasting. 

Keywords—Environment, Natural Disasters, 
Earthquake Prediction, Machine Learning, Earthquake 
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Introduction 
The environment is vital to life on Earth because it 

provides us with air, water, and land, which are all necessities 
for survival. However, natural processes and human activities 
often lead to environmental changes that can have both short- 
term and long-term consequences. Among these natural 
processes, extreme events such as hurricanes, floods, 
wildfires, and earthquakes pose significant threats to human 
civilization [1]. As a whole, these calamities are known as 
natural disasters, and they often leave impacted areas 
devastated and economically crippled for years. One of the 
most destructive types of natural catastrophes is an 
earthquake[2]. Earthquakes emerge without prior indications 
which forces people to react with minimal preparation time 
[3]. These seismic events produce ground movements that 
activate accompanying secondary risks, including tsunami 
waves and landslides, that increase the overall damage 
magnitude  [4][5].  Scientific  research  into  predicting 

earthquakes represents an ongoing challenge because 
earthquakes behave unpredictably. 

Traditional examination of earthquakes depends on 
geological and historical data for potential seismic occurrence 
predictions [6][7]. These procedures can be classified as either 
short-term or long-term. In particular, the evacuation 
procedure benefits from the short-term method, which 
forecasts the possibility of an earthquake a few days or weeks 
in advance. The methodologies offer beneficial understanding 
but do not supply sufficient accuracy for present hazard 
identification. A viable substitute has evolved in the form of 
ML methods in the last several years. By processing seabeds 
data, the algorithms can map out patterns, and the likelihood 
of abnormalities in the probability of earthquakes and seismic 
activities [8]. To be sure, conventional methodologies have 
not been employed in seismic hazard assessment or 
monitoring in recent times due to their ineffectiveness. The 
above-discussed approaches in coupling AI solutions have the 
potential to transform earthquake forecasting [9], yielding 
quicker and more accurate prediction information to reduce 
effects of the disaster [10]. 

This study, therefore, seeks to explore how machine 
learning approaches can be utilized in earthquake prediction, 
compared to other approaches that apply in natural disaster 
prediction. It discusses various models and their merits and 
demerits, and makes a comparative analysis to evaluate the 
possibility of AI ramping up the level of disaster preparedness 
and response. 

Motivation and Contribution of the 
Study 

Earthquakes remain among the prominent natural disasters 
whereby several lives are lost, adequate amounts of money are 
spent, and infrastructures are brought down. The complexity 
and non-stationary nature of seismic behavior make the 
probability of accurate prediction of earthquakes a noteworthy 
problem in seismology even at the present stage. Most of the 
traditional statistical models are incapable of addressing 
complex temporal as well as spatial dependencies; therefore, 
resorting to elaborate AI methods is unavoidable. ML and DL 
methods have shown promising results in predictive analytics, 
making them viable tools for earthquake forecasting. This 
study uses a massive dataset from the USGS to conduct an 
exhaustive comparison of several ML models for earthquake 
prediction. The key contributions of this study include: 
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• Utilized the USGS dataset with over 4 million seismic 
data entries for analysis. 

• Employed data cleaning techniques, including the 
removal of columns with excessive missing values. 

• Engineered derived characteristics, which provide 
light on seismic patterns; for example, the time 
intervals between sequential earthquakes of varying 
magnitudes. 

• Evaluating and comparing the performance of multiple 
ML algorithms (LR, RNN, ANN and GRU.) in 
predicting seismic events. 

• Model efficacy is evaluated using measures such as 
accuracy, precision, recall, loss, and F1score, which 
provide a data-driven rating of various AI approaches. 

Justification and Novelty 
This work provides evidence that DL and ML approaches 

can improve earthquake prediction over standard statistical 
models by better representing the complex and nonlinear 
characteristics of seismic activity. Leveraging a 
comprehensive USGS dataset (1904–2023), the research 
implements a strong pipeline for preparing data that includes 
feature selection and management of missing values to 
improve model reliability. A key novelty of this study is the 
introduction of interoccurrence time intervals as a derived 
feature, providing deeper insights into seismic patterns. 
Additionally, the study conducts a comparative analysis of 
multiple ML models, assessing their effectiveness in 
predicting earthquake occurrences based on key seismic 
parameters. By integrating a data-driven approach with 
rigorous model evaluation metrics (F1score, recall, accuracy, 
and precision), this research offers a benchmark study in AI- 
driven earthquake forecasting, contributing to improved 
disaster preparedness and early warning systems. 

Structure of Paper 
The structure of the paper is as follows: Section II reviews 

previous studies on the use of artificial intelligence for 
predicting natural disasters. Section III outlines the methods 
and procedures employed in this study. Section IV analyses 
the results obtained. Finally, Section V summarizes the 
findings of the study and proposes future research directions. 

 

Literature Review 
This section presents their earlier work on earthquake 

detection with new technology and then contrasts it with other 
relevant research projects. Table I summarizes key 
methodologies, performance metrics, datasets, and future 
research directions from recent studies on natural disaster 
prediction and management. 

Bhatia, Ahanger and Manocha (2023) propose an 
intelligent system for earthquake monitoring and prediction 
using cloud and edge computing based on collaborative IoT. 
The classification performance was superior with 92.52% 
precision, 91.72% sensitivity, and 91.01% specificity, as 
measured by the experimental simulation, is achieved by the 
proposed framework. Furthermore, the results demonstrate 
that using edge computing considerably decreases 
computational latency, which is 23.06s. As an added bonus, 
the offered model achieves better accuracy and throughput 
with stability at 92.16% and dependability at 95.26% [11]. 

Wang, Li and Qu (2023) introduces a method that uses 
machine learning (ML) to forecast the collapse condition of 
RC columns that have been damaged by an earthquake and 
will be subjected to other earthquakes. The outcomes of these 
numerical analysis models applied to one thousand ground 
motion records allow for the construction of a dataset based 
on time history analysis. AUC score of 0.87 and F1 measure 
of 0.76 show that the prediction model is quite accurate [12]. 

Pyakurel, Dahal and Gautam (2023) used landslide 
polygons to create 23,217 points that were landslides and 
23,213 points that were non-landslides. The findings showed 
that LR had an accuracy of 74.40% and ET of 86.60%. Within 
the range of 0.866 to The area under the ROC curve for five 
machine learning algorithms is 0.744 for true label prediction 
and 0.935 to 0.819 for probabilistic prediction [13]. 

Banna et al. (2021) creates a model for predicting when 
and where earthquakes may occur. LSTM is recommended for 
the model's construction due to its memory-keeping 
capabilities, according to the literature assessment. An 
attention mechanism was included into the LSTM 
architecture, which increased the model's acc-uracy in 
earthquake prediction to 74.67% [14]. 

Kollam and Joshi (2020) use the Computing Unified 
Device Architecture (CUDA) framework, a well-known 
programming paradigm for General-Purpose Computing on 
GPU, in the creation of a PSVR employing a GPU. They offer 
a GPU-based PSVR model for earthquake prediction. When 
tested on the CPU and GPU, this recently computed PSVR 
model outperformed Scikit Learn and LibSVM libraries in 
terms of training speed and accuracy, reaching 92% [15]. 

Existing studies in earthquake prediction face challenges 
in accuracy, real-time processing, and interpretability. Many 
models, such as LSTM and PSVR, require high computational 
resources or struggle with sequential data. Additionally, 
limited explain ability hinders practical adoption. To address 
these gaps, this study proposes a GRU-based model that 
efficiently captures temporal dependencies with high accuracy 
and minimal overfitting. This approach bridges the gap 
between accuracy, efficiency, and reliability in AI-driven 
earthquake prediction 

 

TABLE I. SUMMARY OF THE PRIOR RESEARCH ON EARTHQUAKE DETECTION AND PREDICTION USING ML APPROACH 
 

Author Dataset Approach Performance Limitations & Future Work 

Bhatia, Ahanger, 
and Manocha 

(2023) 

Real-time IoT sensor data IoT-Edge framework with 
Bayesian models and ANFIS 

for earthquake prediction. 

Precision: 92.52%, 
Reliability: 

95.26%, 

Extend to other disasters and 
optimize computation. 

Wang, Li, and Qu 

(2023) 

10,000 RC Column Models, 47 PEER 

RC Columns 

ML-based collapse prediction 

using Random Forest (RF) & 
SHAP explanations 

AUC:  0.87,  F1 
Score: 0.76 

Enhance dataset diversity and 

refine feature selection for higher 
accuracy 

Pyakurel, Dahal, 

and Gautam 
(2023) 

Landslide Polygons and Earthquake 

Data (23,217 landslide, 23,213 non- 
landslide points) 

Ensemble Learning (ET, LR) 

with SHAP analysis 

ET Accuracy: 

86.60%,  AUC: 
0.866 

Explore deep learning for 

improved landslide prediction and 
integrate real-time monitoring 



Data 
Collection 

USGS 

Dataset 

Data Pre-Processing 
Exploratory Data 

Analysis 

Mode Drop Columns 

Training 

Feature Selection Data Splitting 

Testing 

Apply models like LR, 

RNN, ANN, and GRU 

Evaluation matrix such as 

accuracy, precision, recall, 

loss, and f1-score 

Predict 

Earthquake 

Banna et al. 
(2021) 

Bangladesh Earthquake Catalog. LSTM with attention 
mechanism 

Accuracy: 74.67% Test other architectures on larger 
datasets. 

Kollam and Joshi 

(2020) 

Earthquake datasets processed on 

GPU. 

Parallel SVR Accuracy: 92% Optimize for large datasets and 

compare with DL models. 

 

Methodology 
This study on AI for Earthquake Prediction using Machine 

Learning employs a structured methodology encompassing 
the process of gathering data, cleaning it up, analysing it, 
selecting features, and training the model. The dataset is 
derived from the USGS and covers the years 1904–2023, and 
contains over 4 million earthquake records. To increase model 
performance, the data is preprocessed by removing 
unnecessary columns, normalizing the data, and addressing 
missing values by mode imputation. Feature selection focuses 
on key seismic parameters such as magnitude, depth, location 
coordinates, and interoccurrence time intervals to enhance 
predictive modeling. The dataset is divided into training 
(70%) and testing (30%) sets in order to assess several 
machine learning models, such as ANN, GRU, RNN, and LR. 
The comparison study evaluates these models' performance 
according to F1score, recall, accuracy, and precision, offering 
valuable information about how well AI-driven earthquake 
prediction methods work. In Figure 1, the approach used in 
this study is clearly depicted. 

 

Fig. 1. Flowchart for earthquake prediction 

 

Below is a description of the general procedure that is 
involved in the in-depth investigation of the data flow 
diagram: 

Data Collection 
The US Geological Survey provided the data used in this 

research. Data about earthquakes throughout the world from 
1904 to 2023 is available in the US Geological Survey dataset. 
Seismographs and other monitoring stations documented 
important features and patterns of seismic activity in this 
dataset, which has 22 columns with 4,036,902 unique 
elements. 

Exploratory Data Analysis 

EDA plays a crucial role as the first step in the knowledge 
discovery process. This iterative process allows them to 
uncover patterns, anomalies, and insights that would 
otherwise remain hidden [16]. In the context of this study, they 
conducted a comprehensive data visualization on the USGS 
dataset, which illustrates their findings and analytical 
approach in detail, as presented below: 

 

Fig. 2. Bar Graph for Decadal Trend of Earthquakes 

 

In Figure 2, the number of earthquakes of a magnitude of 
eight or higher is displayed for each decade beginning in 1900 
and continuing until 2020. According to the statistics, there 
have been oscillations throughout the course of time, with a 
significant increase occurring in the 2000s, followed by a 
reduction in the 2010s. 

 

Fig. 3. Average time difference between successive occurrences 

 

Figure 3 represents the categorization of earthquakes, 
which illustrates the average amount of time that passes 
between subsequent earthquake activity. When compared to 
"Very Minor" earthquakes, which occur relatively often with 
an average gap of just three minutes between events, "Great" 
earthquakes have the greatest average time difference, which 
is 436 days. 



 

 

Fig. 4. Frequency of earthquake occurrence per year 

 

The bar graph the yearly frequency of earthquakes from 
1971 to 2021 is shown in Figure 4. Years are shown on an x- 
axis, while the number of reported earthquakes is shown on a 
y-axis. The data reveals a fluctuating trend in earthquake 
occurrences, with a notable increase after the 1990s, peaking 
significantly around the early 2000s, particularly in 2004. 
Following this peak, the frequency exhibits periodic 
variations, with occasional surges in earthquake activity. This 
visualization highlights temporal trends in seismic activity, 
which could be useful for understanding patterns and 
improving earthquake prediction models. 

Data Preprocessing 

Data preprocessing stages have a direct relation to the 
reliability and the quality of the datasets [17]. The process of 
data cleaning alongside transformation and organization 
enhances raw data suitability for analysis when applied 
through proper data management methods. The researchers 

Proposed Gated Recurrent Unit (GRU) 

The GRU is a type of RNN designed for processing 
sequential data. Memory blocks in a cell are not present in 
GRUs, in contrast to conventional RNNs[18]. A Gruel 
consists of two primary components: an update gate and a 
reset gate. The reset gate uses the sigmoid activation function 
(σ) to decide how much of the past should be forgotten, which 
outputs 𝑟𝑡. If 𝑟𝑡 is 1, data is passed through; if 0, it's not. The 

update gate finds out what data to save for the future by using 
the same sigmoid function that gives us 𝑧𝑡. This output is 

combined with a tanh function (ranging from -1 to 1) to create 
a new cell state, ℎ̂𝑡 . Last but not least, the hidden state output 

ℎ𝑡 is created by adding this new state to the current cell state 
[19]. The mathematical representation of the GRU operation 
is given below Equations (1-4): 

Reset Gate 

𝑟𝑡 = 𝜎(𝑊𝑟 𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (1) 

Where, 𝑟𝑡: regulates how much of the past should be 
forgotten. 𝜎: Sigmoid activation (output range: 0 to 1). 
𝑊𝑟, 𝑈𝑟, 𝑏𝑟 Weights and bias for input 𝑥𝑡 and previous hidden 
state ℎ𝑡−1: 

Update Gate 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (2) 

Where, 𝑧𝑡 Controls how much past and new information 
to combine. 𝑊𝑧, 𝑈𝑧, 𝑏𝑧 Weights and bias for input and hidden 
state. 

Candidate Hidden State 

applied multiple preprocessing strategies through standard ℎ̂ = tanh(𝑊 𝑥 + 𝑈 (𝑟 . ℎ ) + 𝑏 ) (3) 
scaling normalization and shape checks and null value 𝑡 ℎ 𝑡 ℎ  𝑡 𝑡−1 ℎ 

detection on their dataset. Further preprocessing steps are 
discussed below. 

• Dropping Columns: The analysis may lose analytical 
significance due to columns containing extremely high 
numbers of missing values ('nst', 'gap', 'din', 'rms', 
'horizontal Error', 'depth Error', 'maguro', 'magnate'). 
They may remove them from the dataset to make it 
more efficient and less biased since there are more than 
a million missing values. 

• Mode Imputation: Fill missing values with the most 
frequently occurring magnitude type. 

Feature Selection 

The raw earthquake data is sorted by important criteria 
including magnitude, depth, time of occurrence, geographical 
coordinates, and so on. The analysis of derived characteristics 
helps understand seismic behavior through calculations of 
time intervals between earthquakes that range in magnitude. 
A more thorough comprehension of earthquake patterns and 
trends on a worldwide scale is made possible by using these 

Where ℎ̂𝑡 New candidate for the current hiddenstate. tanh 
Activation function (output range: -1 to 1). 𝑟𝑡. ℎ𝑡−1 Element- 
wise product to selectively use past hidden state. 

Final Hidden State 

ℎ𝑡 = 𝑧𝑡. ℎ𝑡−1 + (1 − 𝑧𝑡). ℎ̂𝑡 (4) 

Where, ℎ𝑡 Final output of the GRUcell. Combines the 

retained past state 𝑧𝑡. ℎ𝑡−1 with the new candidate (1 − 𝑧𝑡). ℎ̂𝑡 

Model Evaluation 
The model evaluation assesses a performance of models 

on new data [20]. The research employs accuracy, precision, 
recall as well as F1-score metrics to perform a thorough 
performance evaluation [21]. 

Accuracy: This statistic expresses the forecast accuracy as 
a percentage. Equation (5) provides the accuracy calculation 
formula. 

constructed features as input variables for statistical, 
interoccurrence time, and spatiotemporal analysis. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃+𝑇𝑁 

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃 
(5) 

Data Splitting 

This research utilizes a complete dataset that divided 
training purposes into 70% and reserved 30% for the testing 
phase. The training phase took place using the training dataset 
before performing testing operations with the testing dataset. 

where TP stands for "true positive," meaning the model's 
prediction of the earthquake was accurate. There was no 
earthquake and the model did not forecast it, as indicated by 
the TN (true negative) value. False positives (FP) indicate that 
an earthquake did not occur, but the model predicted it; false 
negatives (FN) indicate that an earthquake did occur, but the 
model failed to forecast it. 



Recall: It is the percentage of predictions that were 
accurate for the given set of cases. Recall may be calculated 
using the formula in Equation (6). 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃 

𝑇𝑃+𝐹𝑁 
(6) 

Precision: This metric measures how often out of every 
possible instance are projected to be of a specific class. 
Equation (7) represents the formula for calculating precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃 

𝑇𝑃+𝐹𝑃 
(7) 

F1-Score: The F1-score may be defined as the precision 
and recall harmonic mean. The formula for computing the F1- 
score is given by Equation (8). 

 

 

Fig. 6. Training and Testing Loss for GRU 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙 
(8) 

Figure 6 illustrates the model's loss curves for training and 
testing over 1000 epochs. The downward slopes observed in 

Loss: Loss quantifies how far a model’s predictions are 
from the actual values. It is an optimization metric used during 
training, with lower values indicating better performance. 

 

Result Analysis And 
Discussion 

The systems that were used for each implementation were 
Windows 10 64-bit PCs with 16 GB of RAM and 2 CPU 
cores. The experimental outcomes of the suggested GRU 
model, which evaluates the performance matrix encompassing 
f1score, recall, precision, accuracy, and loss, are shown in 
Table II. 

TABLE II. FINDINGS OF THE GRU MODEL ON THE USGS DATASET FOR 
EARTHQUAKE PREDICTION 

 

Performance Matrix Gated Recurrent Unit (GRU) 

Accuracy 93.10 

Precision 93.20 

Recall 93.17 

F1-score 93.17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Bar graph for GRU Model Performance 

 

Table II and Figure 5 show the GRU model’s performance. 
In this figure, GRU model delivers 93.10% accuracy 
alongside precision and recall values of 93.20% and 93.17%, 
which results in an F1-score of 93.17%. The performance 
metrics demonstrate the GRU model's success in handling 
sequential data from earthquakes while delivering stable and 
dependable outcomes with practically no trade-offs between 
observation quality and recall rate. 

both curves confirm that model performance improves 
continuously during the training process. The model 
demonstrates strong generalization abilities because training 
loss tracks closely with the testing loss, which prevents 
unwanted overfitting. 

 

Fig. 7. Training and Testing Accuracy for GRU 

 

Figure 7 shows the accuracy curves for testing and training 
across 1000 epochs. A blue line displays training accuracy, 
while an orange line shows testing accuracy. Both increase 
over time, with training accuracy (0.926–0.932) slightly 
higher than testing accuracy (0.922–0.926), indicating mild 
overfitting. Despite fluctuations, both follow a general upward 
trend, with rapid gains in early epochs that gradually stabilize. 

Comparison and Discussion 
This section evaluates the model's performance against 

existing model performance on the same dataset. The GRU 
model that follows is contrasted with examples of current 
models, including LR [22], RNN [23] and ANN [24] that 
trained on the USGS data, as shown in Table III. 

TABLE III. COMPARISON BETWEEN GRU AND EXISTING MODELS' 
PERFORMANCE ON THE USGS DATASET 

 

Models Accuracy Precision Recall F1-score 

LR[22] 80.65 81.70 80.70 81.0 

RNN[23] 83.3 - - - 

ANN[24] 90.84 91.03 92.27 91.65 

GRU 93.10 93.20 93.17 93.17 

Table III compares the performance of GRU with existing 
models on the USGS dataset. The GRU model outperforms all 
other approaches, achieving the highest accuracy (93.10%), 
precision (93.20%), recall (93.17%), and F1-score (93.17%). 
In contrast, the ANN model follows closely with 90.84% 
accuracy, 91.03% precision, and 91.65% F1-score, 
demonstrating strong predictive capability. The RNN model 

93.22 

93.2 

93.18 

93.16 

93.14 

93.12 

93.1 

93.08 

93.06 

93.04 

GRU Model Performance for Natural Disaster 

(Earthquake) Preciction 

93.2 

93.17 93.17 

93.1 

Accuracy Precision 

Matrix 

Recall F1-score 

IN
 %

 



reaches 83.3% accuracy without sharing any F1-score 
outcomes, recall, and precision. With an F1-score of 81.0 and 
accuracy and precision of 80.65% and 81.70%, respectively, 
the LR model exhibits the lowest performance. The superior 
results of GRU demonstrations establish its superiority for 
detecting earthquakes which indicates its suitability as a 
preferred method for this task. 

A proposed model using GRU architecture delivers 
enhanced earthquake prediction in comparison to classical 
approaches because it provides better accuracy as well as 
proficient sequential data processing and expanded prediction 
capabilities. The GRU model reaches a 93.10% accuracy in 
predicting earthquakes which proves its ability to extract 
temporal elements from seismic data. GRU processes 
sequence of earthquake data to have less computational 
complexity than models which comprises of LSTMs, and are 
generally problematic for long term dependency. The model 
demonstrates low sensitivity to overfitting issues based on its 
training and testing loss curves' alignment which indicates its 
reliability for practical use. These successes are possible due 
to the improvement of feature selection and the increased 
efficiency of the models using the GRU for seismic 
forecasting in order to reduce disaster risks. 

 

Conclusion And Future 
Scope 

Earthquakes are a complicated and prolonged natural 
phenomenon or event that impacts the lives of people and their 
structures, including the environment. The determination of 
when the earthquake will occur and the most likely location 
and magnitude is still a real problem in seismology since 
earthquakes demonstrate irregular patterns that cause 
uncertainty for forecast models. This paper makes the case as 
to how ML techniques can be utilized for earthquake 
prediction, especially when employing the GRU model. 
Compared with classical models such as LR, RNN, and ANN, 
evaluation metrics consisting of maximum accuracy, 
precision, recall, and F1score prove the superiority of the 
GRU model. The results of the experiments show that the 
suggested GRU model is dependable in processing sequential 
earthquake data with an accuracy rate of 93.10%, thus, it can 
be relied upon for earthquake prediction. The model shows 
good non-specificity and low levels of overfitting that are 
impressive for seismic event prediction. Additional challenges 
exist regarding unbalanced data, along with the focus on 
minimal seismic indicators and calculation expenses, and 
generalization problems between regions. Future research 
demands work in three areas: adding more environmental 
elements into the model framework while balancing model 
classes more effectively while enhancing operational speed, 
and testing the model across different geologic regions. 
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