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ABSTRACT
Data mining is considered as the process of extracting the useful information by finding the hidden 
information out of large chunks of dataset. Frequent itemset mining is the popular data mining methods. 
MapReduce has turn out to be an important distributed processing model for large-scale data-intensive 
applications like data mining. MapReduce is an efficient, scalable, and easy programming model for 
large-scale distributed data processing on a huge cluster of commodity computers. In this paper, RElim 
algorithm is implemented on MapReduce framework.
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INTRODUCTION

To handle storage resources across the cluster, 
Hadoop uses a distributed user-level file system. 
The file system Hadoop distributed file system 
(HDFS) is written in Java and measured for 
portability across heterogeneous hardware and 
software platforms. An important characteristic of 
Hadoop is the partitioning of data and computation 
across thousands of hosts and executing application 
computations in parallel. MapReduce is an easy 
programming model for large-scale distributed 
data processing and also used in cloud computing.
Association rule mining (ARM) is an essential 
component of data mining. Data mining and 
knowledge discovery have appeared to mine 
useful, hidden and unknown patterns, and 
knowledge from large database. ARM is one of 
the mainly essential and accepted procedures of 
data mining which locates interesting correlation 
or association between set of items or attributes 
and also frequent patterns in large database.[1] The 
mainly usual application of ARM is in market 
basket analysis which examines the purchasing 
behavior of customers by discovering the frequent 
items purchased together. In addition to the 
many business application, it is also appropriate 
to bi-informatics, medical diagnosis, and text 
analysis.[2] Various ARM algorithms have been 
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developed that diverges from each other in the 
way the approach they used. These approaches are 
based on candidate generation, without candidate 
generation, based on equivalence class clustering, 
maximal hypergraph clique clustering, and lattice 
traversal scheme.[3-5] When it comes to mine vast 
volume of data, these algorithms failed to verify 
scalability and efficiency. The major reasons 
behind this are the processing capacity, storage 
capacity, and RAM of a single machine.[6] For 
this reason, parallel and distributed algorithms 
are developed to present large-scale computing 
in ARM on several processors. These parallel 
and distributed algorithms progress the mining 
performance but also include some overheads 
such as partition of input data, workloads 
balancing, reduction in communication costs, and 
aggregation of information at local nodes to form 
the global information. There are a variety of such 
algorithms developed that deals with these issues in 
homogeneous computing environment.[7-10] These 
usual parallel and distributed algorithms are not 
suitable for heterogeneous environment such as 
heterogeneous cluster and grid environment.[11-18]

APACHE HADOOP MAPREDUCE 
FRAMEWORK

The word “MapReduce” originally referred to the 
proprietary Google technology.[44] MapReduce 
was first described Dean and Ghemawat[43]research 
paper from Google, by Jeffrey Dean and Sanjay 
Ghemawat, researchers in Google. MapReduce 
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is a patented software framework introduced by 
Google to support distributed computing on large 
datasets on clusters of computers. MapReduce 
is a functional programming model. It runs in 
the Hadoop background to provide scalability, 
simplicity, speed, recovery, and easy solutions 
for data processing. MapReduce is a parallel 
and distributed solution approach developed by 
Google for processing large datasets. MapReduce 

is used by Google and Yahoo to power their web 
search. Hadoop is a large-scale distributed batch 
processing infrastructure for parallel processing 
of big data on large cluster of commodity 
computers.[30] Hadoop is an open source project 
of Apache[23] which implemented Google’s File 
System[31] as HDFS and Google’s MapReduce[21] 
as Hadoop MapReduce programming model.

Hadoop MapReduce

MapReduce is a programming model considered 
for parallel processing of vast volumes of data by 
separating the job into independent tasks across a 
bulky number of machines. It uses two concepts: 
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Figure 2: :Detailed Hadoop MapReduce data flow

Figure 1: Overall view of Hadoop distributed file system
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of data to the mapper machines and collects the 
information once a mapper is finished. If the 
mapper is finished, then the reducer machines will 
be allocated work. All key/value pairs with the 
same key will be transporting to the same reducer. 
Table 1 data are represented in diagrammatic form 
as shown in Figure 3.
MapReduce is a programming model since all the 
parallelization, intermachine communication and 
fault tolerance are held by run-time system.[21]

ARM

It is proposed by Agrawal et al., in 1993.[41] It is 
an important data mining model studied widely 
by the database and data mining. Initially ARM is 
used for market basket analysis to discover how 
items are purchased by customers.

Definition

ARM is a procedure which is meant to find frequent 
patterns, correlations, associations, or causal 
structures from datasets found in various kinds of 
databases such as relational databases, transactional 
databases, and other forms of data repositories.[42]

The major challenge found in frequent pattern 
mining is a number of result patterns. If the 

Table 1: Input and output for map and reduce
Category Input Output
Map <k1, v1> list < k2, v2>

Reduce <k2, list (v2)> (k3, v3)

Figure 3: MapReduce model with input and output shown 
for each phase

Map and reduce. Based on it, a MapReduce 
program consists of two functions mapper and 
reducer which run on all machines in a Hadoop 
cluster. The input and output of these functions are 
in the form of (key and value) pairs.[30] MapReduce 
has two key components: Map and reduce. A map 
is a function which is used on a set of input values 
and computes a set of key/value pairs. Reduce is 
a function which takes these results and applies 
another function to the result of the map function. 
A reducer gets all the data for an individual “key” 
from all the mappers [Figure 1].
MapReduce programs are designed to compute 
huge volumes of data in a parallel fashion. This 
requires separating the workload across a large 
number of machines. This model would not scale 
to large clusters [Figure 2].[30]

All data elements in MapReduce cannot be 
updated. If in a mapping task you change an input 
(key and value) pair, it does not get reflected 
back in the input files; communication occurs by 
generating new output (key and value) pairs which 
are then promoted by the Hadoop system into the 
next phase of execution.[30]

Input and output types of a MapReduce job: 
(Input) <k1, v1> -> map -> <k2, v2>-> reduce -> 
<k3, v3> (Output). The mapper takes the input 
(k1, v1) pairs from HDFS and generates a list of 
intermediate (k2, v2) pairs. An optional combiner 
function is applied to decrease communication 
cost of transferring intermediate outputs of 
mappers to reducers. Output pairs of mapper 
are locally sorted and grouped on same key and 
provide for to the combiner to make local sum. The 
intermediate output pairs of combiners are shuffled 
and exchanged between machines to cluster all the 
pairs with the same key to a single reducer. This is 
the only one communication step takes place and 
handle by the Hadoop MapReduce platform. There 
is no other communication between mappers and 
reducers take place. The reducer takes (k2, list [v2]) 
values as input, put together sum of the values in 
list (v2) and produce new pairs (k3, v3).

[30,32] Figure 2 
illustrates the workflow of MapReduce.
MapReduce incorporates a framework which 
supports MapReduce operations. A master 
controls the whole MapReduce process. The 
MapReduce framework is responsible for load 
balancing, reissuing task if node as failed or is to 
slow, etc. The master divides the input data into 
separate units and sends the individual chunks 
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minimum support (threshold) value becomes lower, 
then an exponentially large number of itemsets are 
generated. Hence, pruning unnecessary patterns can 
be done effectively. The main aim is to minimize the 
process of finding patterns which are supposed to be 
efficient, scalable, and detect the important patterns.

Disadvantages of other popular frequent 
mining algorithms

1. Apriori reduces the size of the candidate 
set, but it scans the database many times. 

The performance is affected by scanning the 
database multiple times. Apriori is efficient 
only for market basket analysis.

2. Frequent pattern (FP)-growth overcomes 
the limitations of Apriori. It scans only the 
database only twice. The performance is 
improved when compared to Apriori. FP 
suffers from memory requirement problem.

Traditional RElim

This algorithm was proposed by Christian 
Borgelt, in 2005.[40] RElim stands for “Recursive 
Elimination.” RElim tries to find all frequent 
itemsets with a given prefix by recursively renewing 
support at the same time. The approach used in 
the RElim is “pattern-growth method.” RElim 
is based on H-mine and FP-growth algorithms. 
RElim uses linked list as a data structure. RElim 
uses horizontal layout. RElim algorithm is free 
from candidate generation.

RElim algorithm [Figure 4][40]

The preprocessing of RElim is demonstrated in 
Figure 5, which shows an example transaction 
database on the left. The frequencies of the items 
in this database, sorted ascending, are shown in 
Figure 5 in the middle. If we are given a user-
specified minimal support of three transactions, 
items f and g can be discarded. After doing 
so and sorting the items in each transaction 
ascending with respect to their frequencies, we 
obtain the reduced database shown in Figure 5 
on the right.Figure 4: Relim algorithm

Figure 5: Transaction database (left), item frequencies (middle), and reduced transaction database with items in 
transactions sorted ascending with respect to their frequency. (a) Initial database. (b) Calculating item frequencies 
(support = 3). (c) Sorted with respect to frequencies

a b c



Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 15

Recursive procedure of RElim

The lists are grouped according to their leading 
item. The leading item of each transaction has 
been removed from all transactions, as it is 
implicitly represented by which list a transaction 
is contained. Each transaction list contains in its 
header a counter for the number of transactions. 
For the rightmost list, this count states the support 
of the associated item in the represented dataset 
and the left list represented the list of items 
followed by the leading item [Figure 6].
Reassignments are made to lists that lie to the 
right of the currently processed one. For each 
list element, the leading item of its transaction 
is retrieved and used as an index into the list 
array; then, the element is added at the head of 
the corresponding list. Copy of the list element 
is inserted in the same way into an initially 
second array of transaction lists. In this particular 
example, remove h and makes its support as zero 
and the list assigned to the remaining lists, i.e. h 
contains three lists of itemsets (1) (e,a,b), (2) 
(b,d), and (3) (a,b,d). The first list (eab) is added 
to list bcz the leading element is e (ab is added to 
list e) and the support is incremented by one bcz 
only one is added from the previous list. For the 
second list (b,d), the second list item d is added 
to list b and increment support of b by 1. For the 
third list (abd), the leading item is a, the remaining 
list (bd) is added to the a, and increment support of 
a by one. The procedure is shown right as prefix h 
[Figure 7].
Next, eliminate e by reassigning the list items of 
e to the corresponding list. In the above example, 
e has three sublists, namely (bd), (cbd), and (ab). 
Reassign the lists one by one, i.e. first d to b, bd to 
c, and b to a and increment the support of b, c, and 
a by one [Figure 8].
The next step is eliminate a by reassigning the 
list items of to the corresponding list. In the 
above example, a has four sublists, namely (b), 
(cbd), (bd), and (b). The first list b, as the first 
list contains only one item directly increment 

Figure 6: Initial database in RElim

Figure 7: Eliminate h and prefix for h is also shown

Figure 8: Eliminate e

Figure 9: Eliminate a

Figure 10: Eliminate c

Figure 11: Eliminate b

support of b, for (cbd) sublist add item (bd) to c 
and increment support of c, for list (bd) add item 
d to b and increment support of b and the last list 
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contains only one item d so directly increment 
support of d [Figure 9].
The above discussed same recursive procedure is 
applied to eliminate c [Figure 10].
All transaction lists have been processed and 
the lists have become empty. The list for the last 
element (referring to item d) is always empty 
because there are no items left that could be in a 

transaction and thus all transactions are represented 
in the counter [Figure 11].

RELIM ALGORITHM ON HADOOP 
MAPREDUCE

To implement an algorithm on MapReduce framework, 
the main tasks are to design two independent map 
and reduce functions for the algorithm and to convert 
the datasets in the form of (key and value) pairs. 
In MapReduce programming, all the mapper and 
reducer on different machines execute in parallel 
fashion, but the final result is obtained only after the 
completion of reducer. If algorithm is recursive, then 
we have to execute multiple phases of MapReduce to 
get the final result [Figure 12].[33]Figure 12: Design of the proposed system

Figure 13: Generating frequent itemsets by RElim on MapReduce
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Traditional RElim to MapReduce

HDFS breaks the transactional database into blocks 
and distributes to all mappers running on machines. 
Each transaction is converted to (key and value) pairs 
where key is the ID and value is the list of items. 
Mapper reads one transaction at time and output (key’ 
and value’) pairs where key’ is each item in transaction 
and value is support or count. The combiner combines 
the pairs with same key’ and makes the local sum 
of the values for each key. The output pairs of all 
combiners are shuffled and exchanged to make the 
list of values associated with same key and give 
output in sorted order of items for each transaction by 
removing the items that have support less than user 
support. Reducers take these item lists and output the 
linked list of items separated by their leading items. 
Final frequent itemsets are obtained by merging the 
output of all reducers [Figure 13].
Table 2 summarizes the algorithms corresponding to 
mapper, combiner, and reducer for RElim algorithm.

CONCLUSION

MapReduce is very beneficial for parallel processing 
of big data on large cluster of commodity computers. 
In this paper, there is focus on the RElim algorithm 
on MapReduce framework. The MapReduce 
computing model is similar to the computation 
of frequent itemsets in RElim algorithm. RElim 
performs excellently on sparse datasets. For 
artificial datasets, RElim has the best performance 
when compared to other frequent itemset mining 
algorithms. For BMS-webView-1, RElim 
performance is almost equivalent to FP growth.
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