
*Corresponding Author: B.Usharani, Email: ushareddy.vja@gmail.com

RESEARCH ARTICLE

www.ajcse.info

Asian Journal of Computer Science Engineering 2017; 2(4):17-21

Implementation of Lossless Compression Algorithms for Text Data

*B. Usharani

*Assistant Professor, Department of Computer Science and Engineering, KLEF, Andhra Pradesh, India.

Received on: 05/05/2017, Revised on: 25/07/2017, Accepted on: 10/08/2017

ABSTRACT

Compression is useful to reduce the number of bits needed to represent to data. Compressing saves speed

file transfer, and decrease costs for storage hardware and network bandwidth. Compression is applied by

a program that uses a algorithm to determine how to shrink the size of data. There are number of data

compression techniques used and they can be categorized as Lossy and Lossless Compression methods.

This paper examines Huffman and arithmetic lossless data compression algorithms and compares their

performance. A set of selected algorithms are implemented to examine the performance in compressing

text data. An experimental comparison of a number of two lossless data compression algorithms i.e.

arithmetic and Huffman is implemented in this paper. In this paper, some of the Lossless data

compression methods and their performance are given.

Keywords: Arithmetic coding, Huffman Algorithm, , Lossless compression, Run length coding, Variable

length encoding etc.

INTRODUCTION
Data Compression means to reduce the number of

bits to store or to transmit. Data compression

techniques are of two types:

1. Lossless data compression-the original

data can be reconstructed exactly from the

compressed data

2. Lossy data compression--the original data

cannot be reconstructed exactly from the

compressed data.

With lossless data compression technique every

single bit of data is to be remained originally after

the decompression .But with lossy compression

technique the file is to be reduced permanently by

eliminating the redundant data.

 Fig .1 Compression Procedures

To compress the data there is the need to encode

the data

The basic coding concepts are

1. Fixed length coding

2. variable length coding

In fixed length coding, same number of bits are

used to represent each character. In variable

length coding variable number of bits are used to

represent a character. To avoid ambiguity no code

word is a prefix of another code word. The

variable length coding has a uniquely decodable

code.

LOSSLESS COMPRESSION TECHNIQUES

ARITHMETIC CODING

Arithmetic coding is based on the frequency of

symbols, and the whole message is represented by

a fractional number between 0 and 1. As the

message size becomes larger, the interval in which

the number belongs becomes narrower.

Arithmetic coding Algorithm

The algorithm for encoding a file using this

method works conceptually as follows [1]:

1. The “current interval” [L,H) is initialized

to [0,1).

2. For each symbol that has to be encoded, do

the following procedure:

 Subdivide the current interval into

subintervals, one for each possible

alphabet symbol. The size of a symbol's

subinterval is proportional to the estimated

probability that the symbol will be the next

symbol in the file according to the model

of the input.

http://www.ajcse.info/

Usharani et al. \ Implementation of Lossless Compression Algorithms for Text Data

© 2015, AJCSE. All Rights Reserved. 18

 Select the subinterval corresponding to the

symbol that actually occurs next in the file,

and make it the new current interval.

3. Output enough bits to distinguish the final

current interval from all other possible

final intervals.

Ex: COLLEGE
Table 1.Characters and corresponding frequencies

Arithmetic coding completely bypasses the idea of

replacing an input symbol with a specific code.

Instead, it takes a stream of input symbols and

replaces it with a single floating point number in

[0,1).

In arithmetic coding, a unique identifier or tag is

generated for the sequence to be encoded.

This tag corresponds to a binary fraction, which

becomes the binary code for the sequence.

We conceptually divide the approach into two

phases.

In the first phase, a unique identifier or tag is

generated for a given sequence of symbols.

This tag is then given a unique binary code

A unique arithmetic code can be generated for a

sequence of length m without the need for

generating code words for all sequences of length

m.

HUFFMAN ALGORITHM

Huffman constructs a code tree from the bottom

up (builds the codes from the right to left).The

algorithm starts by building a list of all the

alphabet symbols in descending order of their

probabilities. It then constructs a tree, with a

symbol at every leaf node from the bottom up.

This is done in steps, where at each step the two

symbols with the smallest probabilities are

selected, added to the top the partial tree, deleted

from the list, and replaced with an auxiliary

symbol representing the two original symbols.

When the list is reduced to just one auxiliary

symbol, the tree is complete. The tree is then

traversed to determine the codes of the symbols
[6].

The codes generated using Huffman technique or

procedure is called Huffman codes. These codes

are prefix codes and are optimum for a given

model (set of probabilities). A code in which no

codeword is a prefix to another codeword is called

a prefix code. The Huffman procedure is based on

two observations regarding optimum prefix codes.

1. In an optimum code, symbols that occur

more frequently (have a higher probability

of occurrence) will have shorter code

words than symbols that occur less

frequently.

2. In an optimum code, the two symbols that

occur least frequently will have the same

length. The code words corresponding to

the two lowest probability symbols differ

only in the last bit. [7]

Though the codes are of different bit lengths, they

can be uniquely decoded. Developing codes that

vary in length according to the probability of the

symbol they are encoding makes data

compression possible. And arranging the codes as

a binary tree solves the problem of decoding these

variable-length codes.[8]

The algorithm for the Huffman coding is

Huffman Algorithm:

1. Create a leaf node for each symbol and

add it to the queue.

2. While there is more than one node in the

queue:

A
JC

S
E

,
Ju

ly
-A

u
g
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

4

Usharani et al. \ Implementation of Lossless Compression Algorithms for Text Data

© 2015, AJCSE. All Rights Reserved. 19

 Remove the two nodes of highest

priority (lowest probability) from

the queue

 Create a new internal node with

these two nodes as children and

with probability equal to the sum

of the two nodes' probabilities.

 Add the new node to the queue.

3. The remaining node is the root node and

the tree is complete

The technique works by creating a binary tree of

nodes. These can be stored in a regular array, the

size of which depends on the number of symbols,

n. A node can be either a leaf node or an internal

node. Initially, all nodes are leaf nodes, which

contain the symbol itself, the weight (frequency

of appearance) of the symbol and optionally, a

link to a parent node which makes it easy to read

the code (in reverse) starting from a leaf node.

Internal nodes contain symbol weight, links to

two child nodes and the optional link to a parent

node. As a common convention, bit '0' represents

following the left child and bit '1' represents

following the right child. A finished tree has up to

n leaf nodes and n-1 internal nodes. A Huffman

tree that omits unused symbols produces the most

optimal code lengths [9].

Huffman coding is a variable length lossless

compression coding technique. Huffman

compression uses smaller codes for more

frequently occurring characters and larger codes

for less frequently occurring characters.

Fig 3: Characters and corresponding frequencies

The characters are arranged according to their

frequencies (in descending order).We start by

choosing the two smallest nodes There are three

nodes with the minimal weight of one. We choose

'G' and 'O' and combine them into a new tree

whose root is the sum of the weights chosen. We

replace those two nodes with the combined tree.

Fig 4: Combining the least two frequencies (G and o) as a

single node

Repeat that step, choose the next two minimal

nodes, it must be ‘C’ and the combined tree of ‘G’

and ‘O’. The collection of nodes shrinks by one

each iteration .we remove two nodes and adds a

new one back in.

Fig 5: Combining the least two frequencies(c and combined

tree of G and o) as a single node

Again, we pull out the two smallest nodes and

build a tree of weight 4(i.e. ‘E’ & ‘L’):

Fig 6: Combining the least two frequencies (E and L) as a

single node

Finally, we combine the last two to get the final

tree. The root node of the final tree will always

have a weight equal to the number of characters in

the input file.

Fig 7: Final Huffman tree

The Huffman tree after assigning 0 to the left

child and 1 to the right child will be seen as

Fig 8 Huffman Tree with 0‘s and 1‘s

Table 2: Characters and their corresponding ASCII code and

variable length code

A
JC

S
E

,
Ju

ly
-A

u
g
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

4

http://en.wikipedia.org/wiki/Array_data_type

Usharani et al. \ Implementation of Lossless Compression Algorithms for Text Data

© 2015, AJCSE. All Rights Reserved. 20

RUN LENGTH CODING

RLE works by reducing the physical size of a

repeating string of characters. This repeating

string, called a run, is typically encoded into two

bytes. The first byte represents the number of

characters in the run and is called the run count. In

practice, an encoded run may contain 1 to 128 or

256 characters; the run count usually contains as

the number of characters minus one (a value in the

range of 0 to 127 or 255). The second byte is the

value of the character in the run, which is in the

range of 0 to 255, and is called the run value.

Uncompressed, a character run of 15 U characters

would normally require 15 bytes to store:

UUUUUUUUUUUUUUU

The same string after RLE encoding would

require only two bytes:

15U

The 15U code generated to represent the character

string is called an RLE packet. Here, the first byte,

15, is the run count and contains the number of

repetitions. The second byte, U, is the run value

and contains the actual repeated value in the run.

In the worst case situations the compressed files

are larger than original files. Uncompressed 12

characters are:

abcdefghijkl

The same string after RLE encoding would

require24 characters space

a1b1c1d1e1f1g1h1i1j1k1l1

RLE is usually applied to the files that contain

large number of consecutive occurrences of the

same data.

Run length Coding Algorithm

1. Pick the first character from source

string.

2. Append the picked character to the

destination string.

3. Count the number of subsequent

occurrences of the picked character

and append the count to destination

string.

4. Pick the next character and repeat steps

b) c) and d) if end of string is NOT

reached

E.g. For the word “COLLEGE “the RLE stored

asC1E2G1L2O1.

Run Length Coding Disadvantages

1. Compression ratio is low as compared to

other algorithms

2. In the worst case the size of output data

can be two times more than the size of

input data.

3. Compression efficiency restricted to a

particular type of content

4. Mainly utilized for encoding of

monochrome graphic data

5. RLE compression is only efficient with

files that contain lots of repetitive data

COMPRESSION RESULT
The result after performing the compression over

semi-structured data by using the above discussed

algorithms is:

 Fig .9: Comparing results

CONCLUSION

In this paper, there is a comparison between

Huffman coding and Arithmetic coding and Run

length coding techniques of data compression on

English words. After testing those algorithms,

Huffman coding and Arithmetic coding

methodologies are very powerful. Huffman

coding and Arithmetic coding gives better results

and reduces the size of the text. For small text

files RLE is good but for long files Arithmetic

gives better results.

REFERENCES

1. https://en.wikipedia.org/wiki/Arithmetic_c

oding

2. B.Usharani,M.Tanooj Kumar,”Survey on

Inverted Index Compression using Semi-

structured Data”,By IJIRS, P.No 97-104

3. B.Usharani,”Survey on Inverted Index

Compression using Structured Data” by

IJARCS ,ISSN No. 0976-5697,P.No(57-

61).

4. B.Usharani, M.Tanooj Kumar” Inverted

Index Compression using structured Data

by AESSN – 2015, ISSN:2348-

8387,P.No(119-124).

5. B.Usharani,” Inverted Index Compression

over Semi- structured Data By MayFeb

journal of Electrical and computer

Engineering,vol2(2017),pages 25-31.

A
JC

S
E

,
Ju

ly
-A

u
g
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

4

https://en.wikipedia.org/wiki/Arithmetic_coding
https://en.wikipedia.org/wiki/Arithmetic_coding

Usharani et al. \ Implementation of Lossless Compression Algorithms for Text Data

© 2015, AJCSE. All Rights Reserved. 21

6. David Solomon ―,Data compression, The

completeReference‖, Fourth edition,

Springer

Khalidsayood,‖ Introduction to data

compression‖,Third edition

M.Nelson,J.L.Gailly,‖ The Data

CompressionBook‖, second edition

7. http://en.wikipedia.org/wiki/Huffman_codi

ng

A
JC

S
E

,
Ju

ly
-A

u
g
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

4

http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Huffman_coding

