

*Corresponding Author: Aayush Mehta, Email: aayushmehta95@gmail.com

REVIEW ARTICLE

 www.ajcse.info

 Asian Journal of Computer Science Engineering 2016;1(1):1-3

A Brief study on JVM

 *Aayush Mehta1,Akriti Saxena2,Tanmay Bhawsar3

 CSE Department Mandsaur Institute of Technology Mandsaur [M.P.]

Received on: 04/06/2016, Revised on: 08/09/2016, Accepted on: 15/09/2016

ABSTRACT
This paper describes the working and architecture of Java Virtual Machine (JVM). Our research on JVM
architectures that how a program gets space in the JVM. The JVM provides platform independent
property to any java program. That means; JVM provides “Compile once and Execute anywhere”
technique We describe the basic architecture of JVM here.
Keywords- Oak, byte code, optop, CORBA, LDAP, WORA.

INTRODUCTION
Objective:-
The objective of this research work is to describe
the basic architecture of JVM. Its memory
management and the flow of execution of a
program.

Java:-
Java is an object oriented programming language
developed by James Goslings, Patrick Naughton,
Chris warth, Ed fronk and Mike Sherfidan in Sun
Microsystems inc. in 1991. It took 18 months to
develop the first working version. This language
was initially called “OAK‟, but was renamed
“java” in 1995. The primary motivation was the
need for a platform independent language that can
be used to create embedded softwares in a cost
effective way.

Features of Java:-
• Compiled and Interpreted.
• Portable.
• Simple Language.
• Platform independent.
• Distributed.
• Robust language.
• Dynamic and Extensible.

JVM (Java Virtual Machine)
A Java virtual machine (JVM) is an abstract
computing machine that enables a computer to run
a Java program. There are three notions of the
JVM specification, implementation and instance.
The specification is a document that formally
describes what is required of a JVM
implementation. Having a single specification
ensures all implementations are interoperable. A

JVM implementation is a computer program that
meets the requirements of the JVM specification.
An instance of a JVM is an implementation
running in a process that executes a computer
program compiled into Java bytecode.

Java Runtime Environment (JRE) is a software
package that contains what is required to run a
Java program. It includes a Java Virtual Machine
implementation together with an implementation
of the Java Class Library. The Oracle Corporation,
which owns the Java trademark, distributes a Java
Runtime environment with their Java Virtual
Machine called HotSpot.

Java Development Kit (JDK) is a superset of a
JRE and contains tools for Java programmers, e.g.
a javaccompiler. The Java Development Kit is
provided free of charge either by Oracle
Corporation directly, or by the OpenJDK open
source project, which is governed by Oracle.

JVM specification
The Java virtual machine is an abstract (virtual)
computer defined by a specification. This
specification omits implementation details that are
not essential to ensure interoperability: the
memory layout of run-time data areas, the
garbage-collection algorithm used, and any
internal optimization of the Java virtual machine
instructions (their translation into machine code).
The main reason for this omission is to not
unnecessarily constrain implementers. Any Java
application can be run only inside some concrete
implementation of the abstract specification of the
Java virtual machine.
Starting with Java Platform, Standard Edition
(J2SE) 5.0, changes to the JVM specification have

http://www.ajcse.info/�

Aayush et al./ A Brief study on JVM

2
© 2015, AJCSE. All Rights Reserved.

been developed under the Java Community
++++++-Process as JSR 924. As of 2006, changes
to specification to support changes proposed to the
class file format (JSR 202) are being done as a
maintenance release of JSR 924. The specification
for the JVM was published as the blue book , The
preface states: We intend that this specification
should sufficiently document the Java Virtual
Machine to make possible compatible clean-room
implementations. Oracle provides tests that verify
the proper operation of implementations of the
Java Virtual Machine.
One of Oracle's JVMs is named HotSpot, the
other, inherited from BEA Systems is JRockit.
Clean-room Java implementations include Kaffe
and IBM J9. Oracle owns the Java trademark and
may allow its use to certify implementation suites
as fully compatible with Oracle's specification.

Memory Areas for JVM:
• Method area.
• Class description.
• Constant pool.
• Heap.
• Garbage collection.
• Stack.

JVM Architecture:
The JVM is basically a stack based machine, with
a 32 bit word size, using 2‟s complement
arithmetic. JVM is an efficient way of getting
memory protection on simple architectures that
lack an MMU (Memory Management Unit). This
is analogous to managed code in Microsoft„s
.NET Common Language Runtime.
Figure1.1 Java Virtual Machine

• Optop: Pointer to the top of the operand
stack for the currently active method.

• Frame: Pointer to the stack frame of the
currently active method.

• Vars: Pointer to the beginning of the local
variables of the currently active method.

The JVM Architecture is very much stack
oriented. Most instruction access the stack in

some way. The stack is also used for method calls,
as with many classical machine architectures. A
method call produces a new stack frame, which is
pushed onto the stack and return pops the frame
from the program‟s stack. Almost all JVM
instructions are stack based. In the JVM
specification, the behavior of a virtual machine
instance is described in terms of subsystem,
memory areas, data types, and instruction. These
components describe an abstract inner architecture
for the abstract java virtual machine. It is more to
provide a way to strictly define the required
behavior of implementations. The Specification
defines the required behavior of any java virtual
machine implementation in term of these abstract
components and there interaction.
Figure 1.2 Internal Architecture of JVM

1) Class Loader Subsystem
• Special Java runtime objects that are used

for loading Java classes into the Java
Virtual Machine.

• They provide JVM with functionality
similar to the one of a dynamic linker.

• Each class Loader defines a unique
namespace.

• For every class loaded into JVM a
reference to its class Loader object is
maintained.

a) Class Loader Types:
• Bootstrap Class Loader.
• Extension Class Loader.
• Application Class Loader.

Figure 1.2 Internal working of class loader subsysstem

AJ
C

SE
, S

ep
-O

ct
, 2

01
6,

 V
ol

. 1
, I

ss
ue

 1

Aayush et al./ A Brief study on JVM

3
© 2015, AJCSE. All Rights Reserved.

2) Method Area:
• Area where all the classes loads.
• Classes loads in the class context area of the

method area.

3) Stack Area:
• Area used to store the local variables.
• Used to store the values of the intermediate

variables.
• Here only the reference variable of the

object is created.
• When any new variables encounter then it

gets PUSH into the Stack.
• When the scope of the variable gets over

then the memory gets destroyed and it
directly POP from the Stack.

4) Heap Area:
• Area where the Dynamic memory allocation

takes place.
• Here the object gets created , and it gets

memory.
• As the new object created then it gets

memory into the Heap.
• Size of Heap is also not static. It get

increased as according to the memory
allocation.

• As the work of object is over then with the
help of the garbage collector all the memory
occupied by that object is released.

5) PC Register(Program Counter):
• It is a register used to store the address.
• It stores the address of the next Instruction to

be executed..

6) Native Method Area:
• This memory area is reserved for the native

methods.
• Methods that we used by inheriting from its

parent technology is stored here.

7) Execution Engine:
A) Interpreter:

• Used for step by step execution.
• Saves memory.
• Time consuming.
• So in java JIT compiler added which

overcomes the problem of fast execution.
B) JIT Compiler:

• Just in Time Compiler is a special feature of
java.

• also known as dynamic translation.

• It first Compile the program into the related
Intermediate code.

• Then after interpretation takes place.
• Its uses the properties of the compiler as

well as interpreter.

CONCLUSION
According to the study of JVM, JVM provide us the
facility of portable code, which support the
mechanism of WORA (Write Once, Run
Anywhere).JVM is Stack based Architecture, so the
operation like push and pop takes place.Here heap is
also used so that runtime memory allocation can be
implemented. Methods from native language is also
inherited here so we can used the properties of
native language.

ACKNOWLEDGMENT
We would like to show our gratitude to our CSE
lecturer miss. Priyanka Mangal mam for her support
and efforts.

REFERENCE

1. T. Suganuma, T. Ogasawara, M. Takeuchi,
T. Yasue, M. Kawahito, K. Ishizaki, H.
Ko-matsu, and T. Nakatani,

2. The Last Stage of Delirium Research Group
,Poland, “Java and Java Virtual Machine
security vulnerabilities and their exploitation
techniques.”, October 3rd - 4th 2002.

3. J. Meyer and T. Downing., “Java Virtual
Machine.” O‟Reilly, 1997.

4. James Gosling, Bill Joy, Guy Steele, and
GiladBracha,“TheJavaLanguageSpecificatio
n”,Addison-Wesley,2000,JavaSpec.

5. E. Balaguruswami, “Programming with
java”, Tata McGraw-Hill

6. http://www.java.sun.com/docs/books/vmspe
c/.

7. http://www.bitpipe.com/tlist/Java-Virtual-
Machine.html.

8. http://www.artima.com/insidejvm/ed2/jvm2.
html.

9. http://www.javacoffeebreak.com/articles/insi
de_java/insidejava-jan99.html.

10. http://java.sun.com/javase/technologies/core/
jndi/index.jsp.

11. http://en.wikipedia.org/wiki/Java_Virtual_M
achine.

12. http://java.sun.com/javase/technologies/co
re/jndi/index.jsp.

13. http://en.wikipedia.org/wiki/Java_Virtual_
Machine.

AJ
C

SE
, S

ep
-O

ct
, 2

01
6,

 V
ol

. 1
, I

ss
ue

 1

http://www.java.sun.com/docs/books/vmspec/�
http://www.java.sun.com/docs/books/vmspec/�
http://www.bitpipe.com/tlist/Java-Virtual-Machine.html�
http://www.bitpipe.com/tlist/Java-Virtual-Machine.html�
http://www.artima.com/insidejvm/ed2/jvm2.html�
http://www.artima.com/insidejvm/ed2/jvm2.html�
http://www.javacoffeebreak.com/articles/inside_java/insidejava-jan99.html�
http://www.javacoffeebreak.com/articles/inside_java/insidejava-jan99.html�
http://en.wikipedia.org/wiki/Java_Virtual_Machine�
http://en.wikipedia.org/wiki/Java_Virtual_Machine�
http://java.sun.com/javase/technologies/core/jndi/index.jsp�
http://java.sun.com/javase/technologies/core/jndi/index.jsp�

